凝
土
结
构
课
程
设
计
姓 名:
班 级 :
学 号 :
河 南 理 工 大 学
Henan Polytechnic Universit
目 录
一、 设计题目 1
二、 设计资料 1
三、平面结构布置图 1
四、 板的设计 2
4.1 板的计算跨度及荷载 2
4.1.1 板的计算跨度 3
4.1.2 荷载计算 4
4.1.3 内力计算 4
4.2正截面承载力计算 5
五、次梁的设计 5
5.1 次梁的计算跨度及荷载 5
5.1.1 计算跨度 6
5.1.2 荷载计算 6
5.2 次梁的正截面受弯承载力及配筋计算 7
5.2.1 弯矩计算 7
5.2.2剪力计算 7
5.2.3截面承载力计算 7
六、 主梁的设计 9
6.1 主梁的计算跨度及荷载 9
6.1.1主梁荷载计算 9
6.1.2主梁跨度计算 9
6.2 主梁的内力计算 10
6.2.1 固端弯矩 10
6.2.2支座A、B的最大负弯矩及相应的支座B'、A'的负弯矩计算 11
6.2.3 支座最大剪力 11
6.2.4 主梁跨中最大正弯矩 11
6.3 主梁正截面受弯承载力计算及配筋 13
6.4 主梁斜截面受剪承载力计算及配置钢筋 14
6.4.1 截面验算 14
6.4.2 配筋 14
七、 施工图 15
参 考 书 目 16
一、 设计题目
单向板肋梁楼盖设计
二、 设计资料
1.楼面均布可变荷载标准值为7.3;
2.形式及尺寸: 25000×20400;
3.混凝土强度等级:C20;
4.计算要求:板和次梁强度按塑性内力重分布计算,主梁强度按弹性理论计算。
5. 配筋要求:梁中受力钢筋为HRB335级钢筋,其余采用HPB300级钢筋。
三、平面结构布置图
1、确定主梁的跨度为,次梁的跨度为,主梁每跨内布置两根次梁,板的跨度为。楼盖结构布置图如下:
2、按高跨比条件,当时,满足刚度要求,可不验算挠度。对于工业建筑的楼盖板,要求,取板厚
3、次梁的截面高度应满足~~,取 则~~,取b=180mm。
4、主梁的截面高度应该满足~~,h=650mm,则~~,取。
四、 板的设计
板按考虑塑性内力重分布方法计算。
4.1 板的计算跨度及荷载
4.1.1 板的计算跨度
按塑性理论计算板厚和板的计算跨度,边跨一般取n +,中间跨取n(为净跨度)。
中间跨: 0=2267-180=2087mm
边跨: 0=n +=2267-120-180/2+80/2=2097mm
边跨与中间跨的计算跨度相差:(2.097-2.087)/2087=0.005<0.1
故可按等跨连续板计算内力。
4.1.2 荷载计算
板自重 0.08×25=2.0()
楼板面层 0.02×20=0.4()
天棚抹灰 0.015×17=0.26 (k N/m2)
恒荷载标准值 =2.66 ()
活荷载标准值 =7.3()
荷载设计值
根据建筑结构荷载规范对于标准值大于4的工业房屋楼面的结构活载=1.3,所以
g+q =1.2×2.66+1.3×7.3=12.68 ()
g+q =1.35×2.66+1.3×0.7×7.3=10.23()
取g+q=12.68
4.1.3 内力计算
边跨和中间跨的计算跨度相差,故可按等跨连续板计算内力。各截面的弯矩计算见表1
表1.板的弯矩计算
截 面 | 边跨中 | 第一内支座 | 中间跨中 | 中间支座 |
弯矩系数 | +1/11 | -1/11 | 1/16 | -1/14 |
5.07 | -5.07 | 3.48 | -3.98 |
取板的截面有效高度ho=60mm
各截面的配筋计算见表2
表2.各截面的配筋计算
截面 | 边跨中 | 第一内支座 | 中间跨中 | 中间支座 | ||
平面图中位置 | 1-⑥轴间 | 1-⑥轴间 | 1-②轴间 ⑤-⑥轴间 | 2-⑤轴间 | ①-②轴间 5-⑥轴间 | 3-⑤轴间 |
M(KN.M) | 5.07 | -5.07 | 3.48 | 2.784 | -3.98 | -3.148 |
0.147 | 0.147 | 0.101 | 0.081 | 0.115 | 0.092 | |
0.920 | 0.920 | 0.947 | 0.958 | 0.939 | 0.952 | |
340 | 340 | 227 | 179 | 262 | 206 | |
选配钢筋 | 8@140 | 8@140 | 8@200 | 8@250 | 8@190 | 8@200 |
实配筋面积 | 359 | 359 | 251 | 201 | 265 | 251 |
五、次梁的设计
5.1 次梁的计算跨度及荷载
5.1.1 计算跨度
次梁两端与边梁整体连接,按塑性理论计算时板和次梁的计算跨度,边跨一般取n +,中间跨取n(为净跨度)。
则次梁的计算跨度为:
边跨: 0=5.0-0.12-0.25/2+0.24/2=4.875m<1.025×5.75=5.9m
中间跨: 0=5.0-0.25=4.75m
跨度差 (4.875-4.75)/4.75=0.026<10%
可按等跨连续梁计算内力。
次梁截面几何尺寸、支承情况及计算简图见图2。
5.1.2 荷载计算
由板传来的恒载 2.66×2.267=6.03(kN/m)
次梁自重 (0.4-0.08)×0.18×25=1.44(kN/m)
次梁梁侧抹灰 (0.4-0.08)×2×0.015×17=0.16(kN/m)
恒荷载标准值 =7.36(kN/m)
活荷载标准值 =8.0×2.267=18.14(kN/m)
荷载设计值 g+q =1.2×7.36+1.3×18.14=26.97(kN/m)
g+q =1.35×7.36+1.3×0.7×18.14=26.44(kN/m)
取g+q=26.97(kN/m)
5.2 次梁的正截面受弯承载力及配筋计算
5.2.1 弯矩计算
表3.次梁弯矩计算
截 面 | 边跨中 | 第一内支座 | 中间跨中 | 中间支座 |
弯矩系数 | +1/11 | -1/11 | 1/16 | -1/14 |
58.27 | -58.27 | 40.06 | -45.78 |
表4. 次梁剪力计算
截 面 | 边跨中 | 第一内支座(左) | 第一内支座(右) | 中间支座 |
剪力系数 | 0.45 | 0.6 | 0.55 | 0.55 |
57.71 | 76.95 | 70.53 | 70.53 |
次梁跨中按T形截面进行正截面承载力计算,其翼缘宽度取下面两者中较小者。
==4.75/3=1.58m
=b+=0.2+1.8=2.0m
取=1.58m
判别各跨中截面属于哪一类T形截面,取h0 = 400-40=360(mm),
则=9.6×1580×80×(360-)=388.30(kN·m) >58.27kN·m(边跨跨中弯矩)
故各跨中截面均属于第一类T形截面。
支座截面按矩形截面计算。第一支座截面按两排筋考虑取ho=400-70=330mm,中间支座按一排筋考虑取h0=400-40=360mm,次梁正截面承载力计算见表5
表5. 次梁正截面承载力计算
截面 | 边跨中 | 第一内支座 | 中间跨中 | 中间支座 |
M(kN.m) | 58.27 | -58.27 | 40.06 | -45.78 |
0.030 | 0.279 | 0.015 | 0.138 | |
0.030< | 0.335<0.35 | 0.015<0.55 | 0.149<0.35 | |
0.985 | 0.832 | 0.992 | 0.925 | |
547.8 | 707.4 | 373.9 | 458.3 | |
选配钢筋 | 2 14+1 18 | 3 14+1 16 | 2 12+1 14 | 3 14 |
实配筋面积 | 562.5 | 716.5 | 379.9 | 462 |
2.考虑塑性内力重分布要求满足
次梁斜截面承载力计算见表6
表6. 次梁斜截面承载力计算
截 面 | 边跨中 | 第一内支座 | 中间跨中 | 中间支座 |
V | 57.71 | 76.95 | 70.53 | 70.53 |
(N) | 17280>V | 15840>V | 15840>V | 172800>V |
(N) | 5544050820 | 50820 | 55440 | |
箍筋肢数、直径 | 28 | 28 | 28 | 28 |
100.6 | 100.6 | 100.6 | 100.6 | |
4302.49 | 342.62 | 454.22 | 7.23 | |
实配箍筋间距S(mm) | 200 | 200 | 200 | 200 |
6.1 主梁的计算跨度及荷载
6.1.1主梁荷载计算
由次梁传来的恒载 7.36×5=36.8(kN)
主梁自重(折算为集中荷载) (0.65-0.08)×0.25×2.267×25=8.08(kN)
主梁梁侧抹灰(折算为集中荷载)(0.65-0.08)×2×0.015×17×2.267=0.66(kN)
恒荷载标准值 =45.54(kN)
活荷载标准值 =5×16.0=80.00(kN)
总荷载设计值 g+q=1.2×45.45+1.3×80=158.65kN
g+q=1.35×45.54+1.3×0.7×80=134.28kN
取g=1.2×45.54=54.65kN
q=1.3×80=104kN
g/q=0.53>0.3
6.1.2主梁跨度计算
边跨 0=6800-120-400/2+400/2+360/2=6860(mm)
0=1.025×(6800-120-400/2)+400/2=6840mm
取0=6840mm
中间跨 0=n +b=6800(mm)
为等跨连续梁。
按弹性理论计算时,不考虑塑性内力重分布
取柱截面尺寸为400mm×400mm
主梁的截面几何尺寸、支承情况、计算简图如图3所示:
6.2 主梁的内力计算
按端支座是固定的三跨等截面连续梁计算,故采用实用弯矩分配法计算。
6.2.1 固端弯矩
恒 =g(1-)=54.65×2.267×=82.59kN·m
总 = (g+q)(1-)=158.65×2.267×=239.77kN·m
6.2.2支座A、B的最大负弯矩及相应的支座B'、A'的负弯矩计算
(注:计算MB'和MA'是为了求支座最大剪力),如表7所示。
表7 主梁支座最大负弯矩MA、MB 及相应的MB'和MA'的计算
6.84m | 6.8m | 6.84m | |
A | B | ||
分配系数 | -0.5 | -0.5 -0.5 | -0.5 |
恒 | -82.59 +82.59 | -82.59 +82.59 | -82.59 +82.59 |
总 | -239.77 +239.77 | -239.77 +239.77 | -239.77 +239.77 |
分传弯矩 | -119. | -39.30 0 | +41.30 |
相加弯矩之和 | +119.88 | -279.07 +239.77 | -41.29 |
分配弯矩 | +79.595 | +79.595 -99.24 | -99.24 |
传递弯矩 | +39.80 | -49.62 | |
支座弯矩 | -199.97 +199.48 | -199.48 +140.53 | -140.53 +190.15 |
MB=MB,max-(g+q) =-199.48+158.65×0.5/2=-159.82kN·m
同理
MA=-199.97+158.65×0.5/2=-160.31 kN·m
6.2.3 支座最大剪力
支座A右截面最大剪力
VA,r.max=(199.97-199.48)/6.84+158.65=158.72kN
支座B左截面最大剪力
VB.l,max=(199.48-199.97)/6.84+158.65=158.58kN
支座B右截面最大剪力
VB.r.max=(199.48-140.53)/6.8+158.65=167.32kN
6.2.4 主梁跨中最大正弯矩
先用实用弯矩分配法算出与边跨跨中截面最大正弯矩相对应的支座负弯矩值,如表8所示。
表8 与边跨跨中最大正弯矩相对应的支座负弯矩的计算
6.84m | 6.8m | 6.84m | |
A | B | ||
分配系数 | -0.5 | -0.5 -0.5 | -0.5 |
-239.77 +239.77 | -82.59 +82.59 | -239.77 +239.77 | |
分传弯矩 | -119.88 | +39.30 | |
相加弯矩之和 | +119.88 | -43.29 | |
分配弯矩 | -38.2958 | -38.295 | |
传递弯矩 | -19.15 | ||
支座弯矩 | -258.92 +81.59 | -81.59 |
边跨跨中最大正弯矩发生在B支座左侧第一个集中荷载处,其值为
(b)中间跨中最大正弯矩
先用实用弯矩分配法算出与中间跨中截面最大正弯矩相对应的B支座负弯矩值,如表9所示。
表9 与中间跨跨中最大正弯矩相对应的B支座负弯矩值的计算
6.84m | 6.8m | 6.84m | |
A | B | ||
分配系数 | -0.5 | -0.5 -0.5 | -0.5 |
-82.59 +82.59 | -239.77 +239.77 | -82.59 +82.59 | |
分传弯矩 | -41.30 | -39.30 | |
相加弯矩之和 | +41.30 | -279.07 | |
分配弯矩 | +118.885 | +118.885 | |
传递弯矩 | +59.44 | ||
支座弯矩 | -23.15 +160.19 | -160.19 |
=158.65×2.267-160.19=199.47kN·m
6.3 主梁正截面受弯承载力计算及配筋
由==6.8/3=2.267m
取=2.267m
判别各跨中截面属于哪一类T形截面,跨中取h0 = 650-40=610(mm),=2267(边跨跨中弯矩)
故各跨中截面均属于第一类T形截面。
支座截面按矩形截面计算
截面有效高度h0 =650-80=570mm(因支座弯矩较大,设布置两排筋,布置在次梁主筋下面)。
梁中受力钢筋为HRB335级钢筋,主梁正截面承载力计算见表9。
表10 主梁正截面受弯承载力计算及配筋计算表
截面 | 支座A | 边跨跨中 | 支座B | 中间跨中 |
弯矩M | -160.31 | 149.54 | -159.82 | 199.47 |
250×570 | 2267×610 | 250×570 | 2267×610 | |
0.206 | 0.018 | 0.205 | 0.025 | |
0.233<0.35 | 0.018<0.55 | 0.232<0.35 | 0.025<0.55 | |
0.883 | 0.991 | 0.884 | 0.978 | |
计算配筋面积 | 1061 | 825 | 1057 | 1104 |
选用钢筋 | 2 22 +2 16 | 2 22 +2 16 | 2 22 +2 16 | 2 22 +2 16 |
实际配筋面积 | 1162 | 1162 | 1162 | 1162 |
6.4 主梁斜截面受剪承载力计算及配置钢筋
6.4.1 截面验算
0.25 fc bh0=0.25×9.6×250×570=342.00kN >VBr,max=167.32 kN(符合要求)
6.4.2 配筋
不设弯起钢筋,只配箍筋,并用8@200,现验算如下:
6.5 主梁附加钢筋的计算
由次梁传至主梁的全部集中荷载为
F=104+1.2×36.8=148.16kN
用8双肢箍,n=2,得:
采用在次梁每一侧边各加密3道8箍筋,间距50mm。
七、 施工图
(1)板的配筋图
(2)次梁的配筋图
主梁的配筋(截面m-m为主次梁竖相交处,在主梁此处次梁截面两侧各配置加密箍筋3道8@50mm。)
参 考 书 目
[1]《混凝土结构基本原理》(上),重庆大学出版社;
[2]《混凝土结构基本原理》(下),重庆大学出版社;