最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2011-5-24--综合练习

来源:动视网 责编:小OO 时间:2025-09-30 21:01:50
文档

2011-5-24--综合练习

一、列方程解应用题注:分清直接设未知数与间接设未知数,设未知数的原则是以表达方式简易为主【例1】儿子与父亲下围棋,双方约定父亲胜一局就得2分,儿子胜一局得8分,负的一方不管是谁都要扣1分,比赛24局以后,父子得分相同,问他们各胜几局?1【解析】法一:设儿子胜了局,输了局,父亲胜了局,输了局,则由得分关系得,解得,所以儿子赢了6局,父亲赢了18局.法二:本题中要求儿子和父亲各胜多少局,可分别设两个未知数为和,要求两个未知数的值,一般要根据不同的等量关系列出两个方程.题中儿子、父亲比赛的总局数是2
推荐度:
导读一、列方程解应用题注:分清直接设未知数与间接设未知数,设未知数的原则是以表达方式简易为主【例1】儿子与父亲下围棋,双方约定父亲胜一局就得2分,儿子胜一局得8分,负的一方不管是谁都要扣1分,比赛24局以后,父子得分相同,问他们各胜几局?1【解析】法一:设儿子胜了局,输了局,父亲胜了局,输了局,则由得分关系得,解得,所以儿子赢了6局,父亲赢了18局.法二:本题中要求儿子和父亲各胜多少局,可分别设两个未知数为和,要求两个未知数的值,一般要根据不同的等量关系列出两个方程.题中儿子、父亲比赛的总局数是2


一、列方程解应用题

注:分清直接设未知数与间接设未知数,设未知数的原则是以表达方式简易为主

【例1】儿子与父亲下围棋,双方约定父亲胜一局就得2分,儿子胜一局得8分,负的一方不管是谁都要扣1分,比赛24局以后,父子得分相同,问他们各胜几局?

1【解析】法一:

设儿子胜了局,输了局,父亲胜了局,输了局,

则由得分关系得,解得,

所以儿子赢了6局,父亲赢了18局.

法二:

本题中要求儿子和父亲各胜多少局,可分别设两个未知数为和,要求两个未知数的值,一般要根据不同的等量关系列出两个方程.题中儿子、父亲比赛的总局数是24局,可列出一个方程:.另外,两人的得分相同,儿子胜的局数正好是父亲负的局数,由此列出另一个方程:.所以可列出方程组: 

将⑵变形为,代入⑴,得,解得,所以.

所以儿子胜了6局,父亲胜了18局.

【例2】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.

2【解析】设每人可免费携带千克行李.一方面,三人可免费携带千克行李,三人携带150千克行李超重千克,超重行李共付4元行李费;另一方面,一人携带150千克行李超重千克,超重行李需付行李费8元.根据超重行李每千克应付的钱数相同,可列方程:

        所以每人可免费携带的行李重量为30千克.

【例3】有甲、乙、丙三个人,当甲的年龄是乙的2倍时;丙是22岁,当乙的年龄是丙的2倍,甲是31岁;当甲60岁时,丙是多少岁?

3【解析】设丙岁时,乙的年龄是岁,当时甲的年龄就是岁,甲乙的年龄差为岁.那么甲是3l岁时,乙是岁,丙是岁,列方程得,,解得,所以乙25岁时,甲50岁,丙22岁.那么甲60岁时,丙32岁.

【例4】某养鸽协会正在讨论是否批准某养鸽人加入养鸽协会的问题,已知该养鸽人的年龄恰好等于他所养的鸽子数.如果批准他加入,那么养鸽协会成员的平均年龄将从50岁升高到51岁,并且养鸽协会成员的平均养鸽数目将从114只降到111只.那么该养鸽协会原有成员多少人?

4【解析】设该养鸽人的年龄为岁,则他养了只鸽子.由于他入会,平均年龄由50岁增大到51岁,该养鸽人的年龄与51的差与现养鸽协会的成员人数相当,所以养鸽协会原有成员人数为人.原有鸽子数原平均养鸽数原人数,且原有鸽子数该人入会后鸽子数该人入会后平均养鸽数.所以,可列方程得,解得,因此,养鸽协会原有成员(人).

二、行程问题基础

注:熟记s = vt,理解平均速度,注意一半路程与一半时间的区别

【例1】甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?

【解析】由于前一半时间与后一半时间的平均速度是已知的,因此可以计算出这人步行的时间.而如果了解清楚各段的路程、时间与速度,题目结果也就自然地被计算出来了.应指出,如果前一半时间平均速度为每分钟80米,后一半时间平均速度为每分钟60米,则这个人从甲走到乙的平均速度就为每分钟走(80+60)÷2=70米.这是因为一分钟80米,一分钟60米,两分钟一共140米,平均每分钟70米.而每分钟走80米的时间与每分钟走60米的时间相同,所以平均速度始终是每分钟70米.这样,就可以计算出这个人走完全程所需要的时间是6720÷70=96分钟.由于前一半时间的速度大于后一半时间的速度,所以前一半的时间所走路程大于6720÷2=3360米.则前一个3360米用了3360÷80=42分钟;后一半路程所需时间为96-42=54分钟.

【例2】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?

5【解析】① 参数法:设A、B两地相距S千米,列式为S÷(2S÷48-S÷40)=60千米.

② 最小公倍法:路程2倍既是48的倍数又是40的倍数,所以可以假设路程为〔48,40〕=240千米.根据公式变形可得   240÷2÷(240÷48-240÷2÷40)=60千米.

【例3】(第六届《小数报》数学竞赛初赛题第1题)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远? 

6【解析】原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。

【例4】(华杯赛试题)某人由甲地去乙地,如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地,如果他从甲地先骑自行车21小时,再换骑摩托车行8小时,也恰好到达乙地,问:全程骑摩托车需要几小时到达乙地?

7【解析】对比分析法:  骑摩托车     骑自行车  

方案一    12小时      9小时

方案二    8小时      21小时   

方案一比方案二    多4        少12

说明   摩托车4小时走的路程=骑自行车12小时走的路程

推出   摩托车1小时走的路程=骑自行车3小时走的路程

整理全程骑摩托车需要12+9÷3=15(小时)

三、数的整除性

注:熟练掌握能被 2,3,4(25),5,6,8(125),9,11整除的数的特征;基本了解能被7,11,13整除的数的特征

【例1】一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价. 

【解析】把□□元作为整数□□分.既然是72本笔记本的总线数,那就一定能被72整除,又因为,(8,9).所以□□,□□.□□,根据能被8整除的数的特征,8 |79□,通过计算个位的□.又□,根据能被9整除的数的特征, (□),显然前面的□应是3.所以这笔帐笔记本的单价是: (元).

【例2】,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?

【解析】积的最后4个数字都是0,说明乘数里至少有4个因数2和4个因数5.,,,共有3个5,2个2,所以方框内至少是.

【例3】两个四位数和相乘,要使它们的乘积能被72整除,求和.

【解析】考虑到,而是奇数,所以必为8的倍数,因此可得;四位数2752各位数字之和为不是3的倍数也不是9的倍数,因此必须是9的倍数,其各位数字之和能被9整除,所以.

【例4】为了打开银箱,需要先输入密码,密码由7个数字组成,它们不是1、2就是3.在密码中1的数目比2多,2的数目比3多,而且密码能被3和16所整除.试问密码是多少? 

【解析】密码由7位数字组成,如果有两个3的话,那么至少是位数,与题意不符;只有一个3的话,那么至少有两个2.如果有三个2,那么1至少有四个,总共至少有个数字,与题意不符,所以2只有两个,1有四个,如此,各数位数字和为,不是3的倍数,所以密码中没有3,只有1、2,由1、2组成的四位数中只有2112能被16整除(从个位向高数位推得),所以密码的后四位是2112,所以前三位数字和是3的倍数,只有111和222满足条件,其中2222112的2多于1,应予排除,所以这个密码是1112112.

四、质数、合数、分解质因数

【例1】(第五届“华杯赛”口试第15题)图中圆圈内依次写出了前25个质数;甲顺次计算相邻二质数之和填在上行方格中;乙顺次计算相邻二质数之积填在下行方格中.

问:甲填的数中有多少个与乙填的数相同?为什么?

8【解析】质数中只有一个偶数2,其余的质数均为奇数.所以甲填的“和数”中除第一个是奇数5外,其余的均为不小于8的偶数.乙填的“积数”中除第一个是偶数6外,其余所填的全是不小于15的奇数.所以甲填的数与乙填的数都不相同.

【例2】大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大岁,他们四个人年龄的乘积是。问他们四个人的年龄各是几岁? 

9【解析】题中告诉我们,是四个人年龄的乘积,只要我们把分解质因数,再按照每组相差2来分成四个数相乘,这四个数就是四个人的年龄了。,由此得出这四个人的年龄分别是12岁、14岁、16岁、18岁。由题意可知,这四个数是相差2的四个整数。它们的积是偶数,当然这四个数不是奇数,一定是偶数。又因为的个位数字不是0,显然这四个数中,没有个位数字是0的,那么这四个数的个位数字一定是2、4、6、8。又因为,而,所以可以断定,这四个数一定是12、14、16、18。也就是说,这四个人的年龄分别是12岁、14岁、16岁、18岁。答:这四个人的年龄分别是12岁、14岁、16岁、18岁。

【例3】已知是质数,也是质数,求是多少?

【解析】是质数,必定是合数,而且大于1.又由于是质数,大于1,一定是奇质数,则一定是偶数.所以必定是偶质数,即. 

【例4】如果某整数同时具备如下三条性质:① 这个数与1的差是质数,②这个数除以2所得的商也是质数,③这个数除以9所得的余数是5,那么我们称这个整数为幸运数。求出所有的两位幸运数

10【解析】由条件②可知,所求的数是偶数,因此可设所求的幸运数是质数的两倍,即此幸运数为2,则的所有可能取值为5,7,11,13,17,19,23,29,31,37,41,43,47。于是2-1的所有可能取值为9,13,21,25,33,37,45,57,61,73,81,85,93。根据题目条件①,2-1应为质数,因此2-1只可能为13,37,61或73。再由条件③知2-1除以9所得的余数应为4,于是2-1只可能是13,从而这个幸运数只能是2=14。

文档

2011-5-24--综合练习

一、列方程解应用题注:分清直接设未知数与间接设未知数,设未知数的原则是以表达方式简易为主【例1】儿子与父亲下围棋,双方约定父亲胜一局就得2分,儿子胜一局得8分,负的一方不管是谁都要扣1分,比赛24局以后,父子得分相同,问他们各胜几局?1【解析】法一:设儿子胜了局,输了局,父亲胜了局,输了局,则由得分关系得,解得,所以儿子赢了6局,父亲赢了18局.法二:本题中要求儿子和父亲各胜多少局,可分别设两个未知数为和,要求两个未知数的值,一般要根据不同的等量关系列出两个方程.题中儿子、父亲比赛的总局数是2
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top