开课实验室:财经科学实验室 年月日
班级: 学号: 姓名:
指导教师签字:
验证性 □综合性 □设计性
实验项目名称 异方差性的检验与修正 成绩:
_
【实验目的】
掌握异方差性的检验与修正方法并能运用Eviews软件进行实现
【实验要求】
掌握各种异方差的检验方法,运用最小二乘法进行模型修下,要求熟悉基本操作步骤,读懂各项上机榆出结果的含义并能进行分析
【实验软件】
Eviews 软件
【实验内容】
根据给定的案例数据按实验要求进行操作
【实验方案与进度】
实验:建立住房支出模型,样本数据如下表所示:
地区 | 可支配收入(元) | 消费性支出(元) |
X | Y | |
北 京 | 10349.69 | 8493.49 |
天 津 | 8140.5 | 6121.04 |
河 北 | 5661.16 | 4348.47 |
山 西 | 4724.11 | 3941.87 |
内蒙古 | 5129.05 | 3927.75 |
辽 宁 | 5357.79 | 4356.06 |
吉 林 | 4810 | 4020.87 |
黑龙江 | 4912.88 | 3824.44 |
上 海 | 11718.01 | 8868.19 |
江 苏 | 6800.23 | 5323.18 |
浙 江 | 9279.16 | 7020.22 |
山 东 | .97 | 5022 |
河 南 | 4766.26 | 3830.71 |
湖 北 | 5524.54 | 44.5 |
湖 南 | 6218.73 | 5218.79 |
广 东 | 9761.57 | 8016.91 |
陕 西 | 5124.24 | 4276.67 |
甘 肃 | 4916.25 | 4126.47 |
青 海 | 5169.96 | 4185.73 |
新 疆 | 54.86 | 4422.93 |
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 05/20/11 Time: 08:31 | ||||
Sample: 1 20 | ||||
Included observations: 20 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 272.3635 | 159.6773 | 1.705713 | 0.1053 |
X | 0.755125 | 0.023316 | 32.38690 | 0.0000 |
R-squared | 0.983129 | Mean dependent var | 5199.515 | |
Adjusted R-squared | 0.982192 | S.D. dependent var | 1625.275 | |
S.E. of regression | 216.00 | Akaike info criterion | 13.69130 | |
Sum squared resid | 846743.0 | Schwarz criterion | 13.79087 | |
Log likelihood | -134.9130 | F-statistic | 1048.912 | |
Durbin-Watson stat | 1.301684 | Prob(F-statistic) | 0.000000 |
(2)用图形法进行异方差检验
由上图可看出,残差有随X增大的趋势,因此可以判断该模型可能存在异方差,但是是否确实存在异方差还需进一步检验。
(3)用样本分段法进行异方差检验
表3
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 05/20/11 Time: 09:01 | ||||
Sample: 1 8 | ||||
Included observations: 8 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 1277.161 | 1540.604 | 0.829000 | 0.4388 |
X | 0.554126 | 0.311432 | 1.779287 | 0.1255 |
R-squared | 0.345397 | Mean dependent var | 4016.814 | |
Adjusted R-squared | 0.236296 | S.D. dependent var | 166.1712 | |
S.E. of regression | 145.2172 | Akaike info criterion | 13.00666 | |
Sum squared resid | 126528.3 | Schwarz criterion | 13.02652 | |
Log likelihood | -50.02663 | F-statistic | 3.165861 | |
Durbin-Watson stat | 3.004532 | Prob(F-statistic) | 0.125501 |
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 05/20/11 Time: 09:01 | ||||
Sample: 13 20 | ||||
Included observations: 8 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 212.2118 | 530.82 | 0.399729 | 0.7032 |
X | 0.7613 | 0.060348 | 12.62505 | 0.0000 |
R-squared | 0.963723 | Mean dependent var | 6760.477 | |
Adjusted R-squared | 0.957676 | S.D. dependent var | 1556.814 | |
S.E. of regression | 320.2790 | Akaike info criterion | 14.58858 | |
Sum squared resid | 615472.0 | Schwarz criterion | 14.60844 | |
Log likelihood | -56.35432 | F-statistic | 159.3919 | |
Durbin-Watson stat | 1.722960 | Prob(F-statistic) | 0.000015 |
F=615472.0/126528.3=4.86
在显著性水平=0.05下,分子,分母的自由度均为6,查F分布表,得临界值
=4.28,因为F=4.86>=4.28,所以拒接原假设,表明模型确实存在异方差。
(4)用White方法检验模型是否存在异方差
根据White检验基本思想,建立辅助函数:
White Heteroskedasticity Test: | ||||
F-statistic | 14.63595 | Probability | ||
Obs*R-squared | 12.65213 | Probability | ||
Test Equation: | ||||
Dependent Variable: RESID^2 | ||||
Method: Least Squares | ||||
Date: 05/20/11 Time: 23:29 | ||||
Sample: 1 20 | ||||
Included observations: 20 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -180998.9 | 103318.2 | -1.751858 | 0.0978 |
X | 49.42846 | 28.93929 | 1.708006 | 0.1058 |
X^2 | -0.002115 | 0.001847 | -1.144742 | 0.2682 |
R-squared | 0.632606 | Mean dependent var | 42337.15 | |
Adjusted R-squared | 0.5384 | S.D. dependent var | 45279.67 | |
S.E. of regression | 29014.92 | Akaike info criterion | 23.529 | |
Sum squared resid | 1.43E+10 | Schwarz criterion | 23.67585 | |
Log likelihood | -232.29 | F-statistic | 14.63595 | |
Durbin-Watson stat | 1.008103 | Prob(F-statistic) | 0.000201 |
(5)如果模型存在异方差,假设异方差的形式是,试用模型变换法对模型进行修正(并证明经过变换的模型已消除异方差),并估计参数。
表5
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 05/20/11 Time: 23:31 | ||||
Sample: 1 20 | ||||
Included observations: 20 | ||||
Weighting series: 1/X^2 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 374.34 | 211.4532 | 1.772938 | 0.0932 |
X | 0.737432 | 0.039238 | 18.79370 | 0.0000 |
Weighted Statistics | ||||
R-squared | 0.982130 | Mean dependent var | 4569.310 | |
Adjusted R-squared | 0.981137 | S.D. dependent var | 1221.737 | |
S.E. of regression | 167.7966 | Akaike info criterion | 13.17802 | |
Sum squared resid | 506802.4 | Schwarz criterion | 13.27759 | |
Log likelihood | -129.7802 | F-statistic | 353.2031 | |
Durbin-Watson stat | 1.702498 | Prob(F-statistic) | 0.000000 | |
Unweighted Statistics | ||||
R-squared | 0.982523 | Mean dependent var | 5199.515 | |
Adjusted R-squared | 0.981552 | S.D. dependent var | 1625.275 | |
S.E. of regression | 220.7525 | Sum squared resid | 877170.3 | |
Durbin-Watson stat | 1.310886 |
White Heteroskedasticity Test: | |||
F-statistic | 0.816247 | Probability | 0.458683 |
Obs*R-squared | 1.752310 | Probability | 0.416381 |
由表5可得,估计结果如下:
表明消除异方差后使用普通最小二乘法,参数估计的标准差降低,t检验显著,说明模型对现实的拟合性增强,从模型中可以看出可支配收入每增加1元,消费性支出平均每增加0.74元。