
一.选择题:
1.若有意义,则x满足条件( )
A.x>2. B.x≥2 C.x<2 D.x≤2.
2.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
3.计算的结果是( )A.6 B. C.2 D.
4.以下运算错误的是( )
A. B.
C. D.
5.(2012泸州)如图,在△ABC中,∠C=90°,
∠A=30°,若AB=6cm,则BC= .
6.(2012南州)如图1,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )
A、(2,0) B、() C、() D、()
7. (2011湖北黄石,7,3分)将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为
A. 3cm B. 6cm C. 3cm D. 6cm
8.(2010 四川泸州)在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )
A.锐角三角形 B.直角三角形 C. 钝角三角形 D.等腰直角三角形
9.(2010广东湛江)下列四组线段中,可以构成直角三角形的是( )
A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6
10. (2011山东德州)下列命题中,其逆命题成立的是__________.(只填写序号)
①同旁内角互补,两直线平行;
②如果两个角是直角,那么它们相等;
③如果两个实数相等,那么它们的平方相等;
④如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.
二、填空题:
1.计算: = ;
2.等式成立的条件是 。
3.三角形的三边长分别为,,,则这个三角形的周长为
cm。
4.化简: = 。
5.计算: = 。
6.( 2012巴中)已知a、b、c是△ABC的三边长,且满足关系+|a-b|=0,则△ABC的形状为______
7. (2011贵州贵阳,7,3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是
(第7题图)
(A)3.5 (B)4.2 (C)5.8 (D)7
8. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么”的逆命题改写成“如果……,那么……”的形式:
9. (2011广东肇庆,13,3分)在直角三角形ABC中,∠C = 90°,BC = 12,AC = 9,则AB= .
10.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm。AB的长= ______ 。
三、解答题:
; ;
(+)(-) (4+)(4-);
(-)2;
四、解答题:
1.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
2.已知x=+3, y=-3,求下列各式的值;
(1)x2-2xy+y2 , (2)x2-y2;
3. 一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个 零件符合要求吗?
三、解答题(每小题8分,共40分)
19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
23. 如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
四、综合探索(共26分)
24.(12分)如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
