最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2017年中考数学总复习专题(几何综合题)

来源:动视网 责编:小OO 时间:2025-10-01 21:00:23
文档

2017年中考数学总复习专题(几何综合题)

2017年中考数学总复习专题精练几何综合题1.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);略
推荐度:
导读2017年中考数学总复习专题精练几何综合题1.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);略
2017年中考数学总复习专题精练

几何综合题

1.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

(1)问:始终与△AGC相似的三角形有△HAB及△HGA;

(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);

略解:由△AGC∽△HAB,得AC/HB=GC/AB,即9/y=x/9,故y=81/x (0(3)问:当x为何值时,△AGH是等腰三角形.

2、如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

(1)求证:△ABG≌△C′DG;

(2)求tan∠ABG的值;

(3)求EF的长.

考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质;解直角三角形。

解答:(1)证明:∵△BDC′由△BDC翻折而成,

∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,

∴∠ABG=∠ADE,

在:△ABG≌△C′DG中,

∵,

∴△ABG≌△C′DG;

(2)解:∵由(1)可知△ABG≌△C′DG,

∴GD=GB,

∴AG+GB=AD,设AG=x,则GB=8﹣x,

在Rt△ABG中,

∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,

∴tan∠ABG===;

(3)解:∵△AEF是△DEF翻折而成,

∴EF垂直平分AD,

∴HD=AD=4,

∴tan∠ABG=tan∠ADE=,

∴EH=HD×=4×=,

∵EF垂直平分AD,AB⊥AD,

∴HF是△ABD的中位线,

∴HF=AB=×6=3,

∴EF=EH+HF=+3=.

3、如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.

(1)求弦AB的长;

(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;

(3)记△ABC的面积为S,若=4,求△ABC的周长.

解:(1)连接OA,取OP与AB的交点为F,则有OA=1.

∵弦AB垂直平分线段OP,∴OF=OP=,AF=BF.

在Rt△OAF中,∵AF===,∴AB=2AF=.

(2)∠ACB是定值.

理由:由(1)易知,∠AOB=120°,

因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,

因为∠DAE+∠DBA=∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;

(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.

=AB•DE+BC•DH+AC•DG=(AB+BC+AC) •DE=l•DE.

∵=4,∴=4,∴l=8DE.

∵CG,CH是⊙D的切线,∴∠GCD=∠ACB=30°,

∴在Rt△CGD中,CG===DE,∴CH=CG=DE.

又由切线长定理可知AG=AE,BH=BE,

∴l=AB+BC+AC=2+2DE=8DE,解得DE=,

∴△ABC的周长为.

4、(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.

(1)求证:∠BCA=∠BAD;

(2)求DE的长;

(3)求证:BE是⊙O的切线.

考点:

切线的判定;圆周角定理;相似三角形的判定与性质.3480611

分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;

(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.

(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.

解答:(1)证明:∵BD=BA,

∴∠BDA=∠BAD,

∵∠BCA=∠BDA(圆周角定理),

∴∠BCA=∠BAD.

(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,

∴△BED∽△CBA,

∴=,即=,

解得:DE=.

(3)证明:连结OB,OD,

在△ABO和△DBO中,∵,

∴△ABO≌△DBO,

∴∠DBO=∠ABO,

∵∠ABO=∠OAB=∠BDC,

∴∠DBO=∠BDC,

∴OB∥ED,

∵BE⊥ED,

∴EB⊥BO,

∴OB⊥BE,

∴BE是⊙O的切线.

5、(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1 = S2+S3(用“>”、“=”、“<”填空);

(2)写出如图中的三对相似三角形,并选择其中一对进行证明.

考点:

相似三角形的判定;矩形的性质.3480611

分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.

(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.

解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,

∴S1=S矩形BDEF,

∴S2+S3=S矩形BDEF,

∴S1=S2+S3.

(2)答:△BCD∽△CFB∽△DEC.

证明△BCD∽△DEC;

证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,

∴∠EDC=∠CBD,

又∵∠BCD=∠DEC=90°,

∴△BCD∽△DEC.

文档

2017年中考数学总复习专题(几何综合题)

2017年中考数学总复习专题精练几何综合题1.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);略
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top