最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

三角函数及解三角形高考模拟考试题精选(含详细答案)

来源:动视网 责编:小OO 时间:2025-10-01 18:38:35
文档

三角函数及解三角形高考模拟考试题精选(含详细答案)

三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.~(Ⅰ)求C;(Ⅱ)若c=,△ABC
推荐度:
导读三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.~(Ⅰ)求C;(Ⅱ)若c=,△ABC
三角函数与解三角形高考试题精选

 

一.解答题(共31小题)

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.

(Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC的最小值.

2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).

(Ⅰ)求cosA的值;

(Ⅱ)求sin(2B﹣A)的值.

3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.

~

(Ⅰ)求C;

(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.

4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.

(1)求tanC的值;

(2)若a=,求△ABC的面积.

5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.

(Ⅰ)证明:sinAsinB=sinC;

(Ⅱ)若b2+c2﹣a2=bc,求tanB.

6.在△ABC中,已知AB=2,AC=3,A=60°.

(1)求BC的长;

\

(2)求sin2C的值.

7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.

(Ⅰ)求a和sinC的值;

(Ⅱ)求cos(2A+)的值.

8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.

(Ⅰ)求A;

(Ⅱ)若a=,b=2,求△ABC的面积.

9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.

10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.

(Ⅰ)求sin∠CED的值;

~

(Ⅱ)求BE的长.

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(Ⅰ)证明:A=2B;

(Ⅱ)若△ABC的面积S=,求角A的大小.

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.

(1)求tanC的值;

(2)若△ABC的面积为3,求b的值.

13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.

(Ⅰ)若a=2,b=,求cosC的值;

}

(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.

14.△ABC的内角A,B,C所对应的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

(Ⅱ)若a,b,c成等比数列,求cosB的最小值.

15.△ABC的内角A、B、C所对的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.

(1)求C和BD;

(2)求四边形ABCD的面积.

17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.

(1)求cosB;

(2)若a+c=6,△ABC的面积为2,求b.

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(1)证明:A=2B;

(2)若cosB=,求cosC的值.

19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.

(Ⅰ)证明:B﹣A=;

(Ⅱ)求sinA+sinC的取值范围.

20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.

$

21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.

(Ⅰ)证明:sinB=cosA;

(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.

22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.

(1)求;

(2)若AD=1,DC=,求BD和AC的长.

23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.

(Ⅰ)若a=b,求cosB;

(Ⅱ)设B=90°,且a=,求△ABC的面积.

24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC

<

(Ⅰ) 求.

(Ⅱ) 若∠BAC=60°,求∠B.

25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,

(Ⅰ)求cosA的值;

(Ⅱ)求cos(2A﹣)的值.

26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.

(Ⅰ)求b的值;

(Ⅱ)求△ABC的面积.

27.在△ABC中,角A,B,C的对边分别是a,b,c.

(1)若sin(A+)=2cosA,求A的值.

(2)若cosA=,b=3c,求sinC的值.

28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC

(1)求cosA的值

(2)若a=1,cosB+cosC=,求边c的值.

29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.

(1)求角B的大小;

(2)若b=3,sinC=2sinA,分别求a和c的值.

30.在△ABC中,a=3,b=2,∠B=2∠A.

(Ⅰ)求cosA的值;

(Ⅱ)求c的值.

/

 

三角函数与解三角形高考试题精选

参与试题解析

 

一.解答题(共31小题)

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.

(Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC的最小值.

【解答】解:(Ⅰ)证明:由得:

∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;

∴2sin(A+B)=sinA+sinB;

即sinA+sinB=2sinC(1);

根据正弦定理,;

∴,带入(1)得:;

∴a+b=2c;

(Ⅱ)a+b=2c;

∴(a+b)2=a2+b2+2ab=4c2;

∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;

又a,b>0;

∴;

∴由余弦定理,=;

∴cosC的最小值为.

 

2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).

(Ⅰ)求cosA的值;

(Ⅱ)求sin(2B﹣A)的值.

【解答】(Ⅰ)解:由,得asinB=bsinA,

又asinA=4bsinB,得4bsinB=asinA,

]

两式作比得:,∴a=2b.

由,得,

由余弦定理,得;

(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.

由(Ⅰ)知,A为钝角,则B为锐角,

∴.

于是,,

故.

 

3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.

(Ⅰ)求C;

(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.

【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0

已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,

整理得:2cosCsin(A+B)=sinC,

即2cosCsin(π﹣(A+B))=sinC

2cosCsinC=sinC

∴cosC=,

∴C=;

(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,

}

∴(a+b)2﹣3ab=7,

∵S=absinC=ab=,

∴ab=6,

∴(a+b)2﹣18=7,

∴a+b=5,

∴△ABC的周长为5+.

 

4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.

(1)求tanC的值;

(2)若a=,求△ABC的面积.

{

【解答】解:(1)∵A为三角形的内角,cosA=,

∴sinA==,

又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,

整理得:cosC=sinC,

则tanC=;

(2)由tanC=得:cosC====,

∴sinC==,

∴sinB=cosC=,

∵a=,∴由正弦定理=得:c===,

则S△ABC=acsinB=×××=.

 

5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.

(Ⅰ)证明:sinAsinB=sinC;

(Ⅱ)若b2+c2﹣a2=bc,求tanB.

【解答】(Ⅰ)证明:在△ABC中,∵+=,

∴由正弦定理得:,

∴=,

∵sin(A+B)=sinC.

∴整理可得:sinAsinB=sinC,

(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.

(

sinA=,=

+==1,=,

tanB=4.

 

6.在△ABC中,已知AB=2,AC=3,A=60°.

(1)求BC的长;

(2)求sin2C的值.

【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,

所以BC=.

(2)由正弦定理可得:,则sinC===,

·

∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,

∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.

因此sin2C=2sinCcosC=2×=.

 

7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.

(Ⅰ)求a和sinC的值;

(Ⅱ)求cos(2A+)的值.

【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,

可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,

,解得sinC=;

"

(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.

 

8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.

(Ⅰ)求A;

(Ⅱ)若a=,b=2,求△ABC的面积.

【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,

所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,

所以tanA=,可得A=;

(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,

△ABC的面积为:=.

)

 

9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.

【解答】解:∵b=3,c=1,△ABC的面积为,

∴=,

∴sinA=,

又∵sin2A+cos2A=1

∴cosA=±,

由余弦定理可得a==2或2.

 

10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.

\

(Ⅰ)求sin∠CED的值;

(Ⅱ)求BE的长.

【解答】解:(Ⅰ)设α=∠CED,

在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,

即7=CD2+1+CD,则CD2+CD﹣6=0,

解得CD=2或CD=﹣3,(舍去),

在△CDE中,由正弦定理得,

则sinα=,

即sin∠CED=.

)

(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,

而∠AEB=,

∴cos∠AEB=cos()=coscosα+sinsinα=,

在Rt△EAB中,cos∠AEB=,

故BE=.

 

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(Ⅰ)证明:A=2B;

(Ⅱ)若△ABC的面积S=,求角A的大小.

【解答】(Ⅰ)证明:∵b+c=2acosB,

∴sinB+sinC=2sinAcosB,

∴sinB+sin(A+B)=2sinAcosB

∴sinB+sinAcosB+cosAsinB=2sinAcosB

∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)

∵A,B是三角形中的角,

∴B=A﹣B,

∴A=2B;

(Ⅱ)解:∵△ABC的面积S=,

∴bcsinA=,

∴2bcsinA=a2,

'

∴2sinBsinC=sinA=sin2B,

∴sinC=cosB,

∴B+C=90°,或C=B+90°,

∴A=90°或A=45°.

 

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.

(1)求tanC的值;

(2)若△ABC的面积为3,求b的值.

【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,

又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,

∴a2=b2﹣=,即a=.

∴cosC===.

∵C∈(0,π),

∴sinC==.

∴tanC==2.

或由A=,b2﹣a2=c2.

可得:sin2B﹣sin2A=sin2C,

∴sin2B﹣=sin2C,

∴﹣cos2B=sin2C,

∴﹣sin=sin2C,

∴﹣sin=sin2C,

∴sin2C=sin2C,

∴tanC=2.

(2)∵=×=3,

解得c=2.

∴=3.

 

13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.

(Ⅰ)若a=2,b=,求cosC的值;

(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.

~

【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,

∴c=8﹣(a+b)=,

∴由余弦定理得:cosC===﹣;

(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,

整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,

∵sinAcosB+cosAsinB=sin(A+B)=sinC,

∴sinA+sinB=3sinC,

利用正弦定理化简得:a+b=3c,

∵a+b+c=8,

∴a+b=6①,

∵S=absinC=sinC,

∴ab=9②,

联立①②解得:a=b=3.

 

14.△ABC的内角A,B,C所对应的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

(Ⅱ)若a,b,c成等比数列,求cosB的最小值.

【解答】解:(Ⅰ)∵a,b,c成等差数列,

∴2b=a+c,

利用正弦定理化简得:2sinB=sinA+sinC,

#

∵sinB=sin[π﹣(A+C)]=sin(A+C),

∴sinA+sinC=2sinB=2sin(A+C);

(Ⅱ)∵a,b,c成等比数列,

∴b2=ac,

∴cosB==≥=,

当且仅当a=c时等号成立,

∴cosB的最小值为.

 

15.△ABC的内角A、B、C所对的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

·

(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

【解答】解:(Ⅰ)∵a,b,c成等差数列,

∴a+c=2b,

由正弦定理得:sinA+sinC=2sinB,

∵sinB=sin[π﹣(A+C)]=sin(A+C),

则sinA+sinC=2sin(A+C);

(Ⅱ)∵a,b,c成等比数列,

∴b2=ac,

将c=2a代入得:b2=2a2,即b=a,

∴由余弦定理得:cosB===.

{

 

16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.

(1)求C和BD;

(2)求四边形ABCD的面积.

【解答】解:(1)在△BCD中,BC=3,CD=2,

由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,

在△ABD中,AB=1,DA=2,A+C=π,

由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,

由①②得:cosC=,

则C=60°,BD=;

(2)∵cosC=,cosA=﹣,

∴sinC=sinA=,

则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.

 

17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.

(1)求cosB;

(2)若a+c=6,△ABC的面积为2,求b.

【解答】解:(1)sin(A+C)=8sin2,

∴sinB=4(1﹣cosB),

$

∵sin2B+cos2B=1,

∴16(1﹣cosB)2+cos2B=1,

∴16(1﹣cosB)2+cos2B﹣1=0,

∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,

∴(17cosB﹣15)(cosB﹣1)=0,

∴cosB=;

(2)由(1)可知sinB=,

∵S△ABC=ac•sinB=2,

∴ac=,

∴b2=a2+c2﹣2accosB=a2+c2﹣2××

<

=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,

∴b=2.

 

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(1)证明:A=2B;

(2)若cosB=,求cosC的值.

【解答】(1)证明:∵b+c=2acosB,

∴sinB+sinC=2sinAcosB,

∵sinC=sin(A+B)=sinAcosB+cosAsinB,

∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),

*

∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).

∴A=2B.

(II)解:cosB=,∴sinB==.

cosA=cos2B=2cos2B﹣1=,sinA==.

∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.

 

19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.

(Ⅰ)证明:B﹣A=;

(Ⅱ)求sinA+sinC的取值范围.

【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,

∴sinB=cosA,即sinB=sin(+A)

又B为钝角,∴+A∈(,π),

∴B=+A,∴B﹣A=;

(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,

∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)

=sinA+cos2A=sinA+1﹣2sin2A

=﹣2(sinA﹣)2+,

∵A∈(0,),∴0<sinA<,

∴由二次函数可知<﹣2(sinA﹣)2+≤

∴sinA+sinC的取值范围为(,]

*

 

20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.

【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,

sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,

所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,

由①②解得27sin2A﹣6sinA﹣16=0,

解得sinA=或者sinA=﹣(舍去);

②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,

所以a=2c,又ac=2,所以c=1.

 

·

21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.

(Ⅰ)证明:sinB=cosA;

(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.

【解答】解:(Ⅰ)证明:∵a=btanA.

∴=tanA,

∵由正弦定理:,又tanA=,

∴=,

∵sinA≠0,

∴sinB=cosA.得证.

(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,

∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,

∴sin2B=,

∵0<B<π,

∴sinB=,

∵B为钝角,

∴B=,

又∵cosA=sinB=,

∴A=,

∴C=π﹣A﹣B=,

综上,A=C=,B=.

 

22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.

(1)求;

(2)若AD=1,DC=,求BD和AC的长.

【解答】解:(1)如图,过A作AE⊥BC于E,

∵==2

∴BD=2DC,

∵AD平分∠BAC

∴∠BAD=∠DAC

在△ABD中,=,∴sin∠B=

在△ADC中,=,∴sin∠C=;

∴==.…6分

(2)由(1)知,BD=2DC=2×=.

过D作DM⊥AB于M,作DN⊥AC于N,

∵AD平分∠BAC,

∴DM=DN,

∴==2,

∴AB=2AC,

令AC=x,则AB=2x,

∵∠BAD=∠DAC,

∴cos∠BAD=cos∠DAC,

∴由余弦定理可得:=,

∴x=1,

∴AC=1,

∴BD的长为,AC的长为1.

 

23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.

(Ⅰ)若a=b,求cosB;

(Ⅱ)设B=90°,且a=,求△ABC的面积.

【解答】解:(I)∵sin2B=2sinAsinC,

由正弦定理可得:>0,

代入可得(bk)2=2ak•ck,

∴b2=2ac,

∵a=b,∴a=2c,

由余弦定理可得:cosB===.

(II)由(I)可得:b2=2ac,

∵B=90°,且a=,

∴a2+c2=b2=2ac,解得a=c=.

∴S△ABC==1.

 

24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC

(Ⅰ) 求.

(Ⅱ) 若∠BAC=60°,求∠B.

【解答】解:(Ⅰ)如图,

由正弦定理得:

∵AD平分∠BAC,BD=2DC,

∴;

(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,

∴,

由(Ⅰ)知2sin∠B=sin∠C,

∴tan∠B=,即∠B=30°.

 

25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,

(Ⅰ)求cosA的值;

(Ⅱ)求cos(2A﹣)的值.

【解答】解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,

代入a﹣c=b,得:a﹣c=c,即a=2c,

·

∴cosA===;

(Ⅱ)∵cosA=,A为三角形内角,

∴sinA==,

∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,

则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.

 

26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.

(Ⅰ)求b的值;

(Ⅱ)求△ABC的面积.

【解答】解:(Ⅰ)∵cosA=,

}

∴sinA==,

∵B=A+.

∴sinB=sin(A+)=cosA=,

由正弦定理知=,

∴b=•sinB=×=3.

(Ⅱ)∵sinB=,B=A+>

∴cosB=﹣=﹣,

sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,

∴S=a•b•sinC=×3×3×=.

 

27.在△ABC中,角A,B,C的对边分别是a,b,c.

(1)若sin(A+)=2cosA,求A的值.

(2)若cosA=,b=3c,求sinC的值.

【解答】解:(1)因为,

所以sinA=,

所以tanA=,

所以A=60°

(2)由

及a2=b2+c2﹣2bccosA

得a2=b2﹣c2

故△ABC是直角三角形且B=

所以sinC=cosA=

 

28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC

(1)求cosA的值

(2)若a=1,cosB+cosC=,求边c的值.

【解答】解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;

代入3acosA=ccosB+bcosC;

 得cosA=;

(2)∵cosA= 

∴sinA=       

cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC    ③

又已知 cosB+cosC=   代入 ③

cosC+sinC=,与cos2C+sin2C=1联立

解得  sinC=

已知 a=1

正弦定理:c===

 

29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.

(1)求角B的大小;

(2)若b=3,sinC=2sinA,分别求a和c的值.

【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,

∵sinA≠0,∴sinB=cosB,

B∈(0,π),

可知:cosB≠0,否则矛盾.

∴tanB=,∴B=.

(2)∵sinC=2sinA,∴c=2a,

由余弦定理可得:b2=a2+c2﹣2accosB,

∴9=a2+c2﹣ac,

把c=2a代入上式化为:a2=3,解得a=,

∴.

 

30.在△ABC中,a=3,b=2,∠B=2∠A.

(Ⅰ)求cosA的值;

(Ⅱ)求c的值.

【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,

利用正弦定理可得 ,即=.

解得cosA=.

(Ⅱ)由余弦定理可得 a2=b2+c2﹣2bc•cosA,即 9=+c2﹣2×2×c×,

即 c2﹣8c+15=0.

解方程求得 c=5,或 c=3.

当c=3时,此时a=c=3,根据∠B=2∠A,可得 B=90°,A=C=45°,

△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.

当c=5时,求得cosB==,cosA==,

∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.

综上,c=5.

 

文档

三角函数及解三角形高考模拟考试题精选(含详细答案)

三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.~(Ⅰ)求C;(Ⅱ)若c=,△ABC
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top