
1、轴向拉压杆件截面正应力,强度校核
2、轴向拉压杆件变形
3、伸长率:断面收缩率:
4、胡克定律:,泊松比:,剪切胡克定律:
5、扭转切应力表达式:,最大切应力:,,,强度校核:
6、单位扭转角:,刚度校核:,长度为l的一段轴两截面之间的相对扭转角,扭转外力偶的计算公式:
7、薄壁圆管的扭转切应力:
8、平面应力状态下斜截面应力的一般公式:
,
9、平面应力状态三个主应力:
,,
最大切应力,最大正应力方位
10、第三和第四强度理论:,
11、平面弯曲杆件正应力:,截面上下对称时,
矩形的惯性矩表达式:圆形的惯性矩表达式:
矩形的抗扭截面系数:,圆形的抗扭截面系数:
13、平面弯曲杆件横截面上的最大切应力:
14、平面弯曲杆件的强度校核:(1)弯曲正应力,
(2)弯曲切应力(3)第三类危险点:第三和第四强度理论
15、平面弯曲杆件刚度校核:叠加法,
16、(1)轴向载荷与横向载荷联合作用强度:
(2)偏心拉伸(偏心压缩):
(3)弯扭变形杆件的强度计算:
简支梁在各种荷载作用下跨中最大挠度计算公式:
均布荷载下的最大挠度在梁的跨中,其计算公式:
Ymax = 5ql^4/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
q 为均布线荷载标准值(kn/m).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:
Ymax = 8pl^3/(384EI)=1pl^3/(48EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:
Ymax = 6.81pl^3/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:
Ymax = 6.33pl^3/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:
Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).
q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).
你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件
进行反算,看能满足的上部荷载要求!
机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件下截面上的最大应力。
根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为
-0.032√(C+W)-0.21√(RD↑2)
式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。一般截面系数的符号为W,单位为毫米3 。根据公式可知,截面的抗弯和抗扭强度与相应的截面系数成正比。
