最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

二元一次方程组教案3 篇

来源:动视网 责编:小OO 时间:2025-10-01 12:39:57
文档

二元一次方程组教案3 篇

二元一次方程组教案3篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学
推荐度:
导读二元一次方程组教案3篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学
二元一次方程组教案3 篇

  一、学习内容分析:

  执教者钱嘉颖时间XXXX年6月12日

  1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)

  2、教材内容简要分析

  教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

  3、学习内容分析表:

  知识点

  重点

  难点

  编号

  内容

  1

  二元一次方程组定义及特点

  二元一次方程组的两个特点

  二元一次方程组成立的条件(未知数要同时满足两个条件)

  2

  二元一次方程组

  代入消元法

  代入消元法的具体解法

  消元法与一元一次方程解法间的联系

  3

  二元一次方程组实际运用

  以实际例题列出方程并解答

  未知数的假设以及运用已知条件列出正确方程。

  二、学习者分析:

  本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,性增强,感情趋于丰富复杂化,有一定思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

  三、课题教学目标:

  四、教学策略:

  1、教学顺序

  (1)复习已学过的一元一次方程知识引入开篇实例。

  (2)以一元一次方程解释实例引导对于二元的思考。

  (3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。

  (4)以本例引发思考二元一次方程组的解法。

  (5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。

  (6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。

  (7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。

  2、教学活动程序

  (1)引起注意

  以“上课”号令以及播放PPT唤起学习者的注意。

  (2)告诉学习者目标

  以PPT的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。

  (3)刺激对先前知识的回忆

  回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。

  (4)呈现刺激材料

  在讲解过程中伴随着PPT的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。

  (5)提供学习指导

  以教材内容为指导,以及教师的提示语和示范性行为等进行引导。

  (6)诱导行为

  在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。

  (7)提供反馈

  在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。

  (8)评定行为

  以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。

  (9)增强记忆与促进迁移

  设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。

  3、教学组织形式

  本次教学中选择运用了以下几种教学组织形式

  (1)讲解的形式

  以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。

  (2)提问的形式

  这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。

  (3)师生共同解答的形式

  采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。

  4、教学方法的选择

  本次课程选择运用了讲授法、演示法、练习法的教学方法。

  (1)语言的方法—讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。

  (2)直观的方法—演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用PPT来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。

  (3)实践的方法—练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。

  二元一次方程组教案 篇2

  教学目标:

  1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用

  2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

  重点:

  能根据题意列二元一次方程组;根据题意找出等量关系;

  难点:

  正确发找出问题中的两个等量关系

  教学过程:

  一、复习

  列方程解应用题的步骤是什么?

  审题、设未知数、列方程、解方程、检验并答

  新课:

  看一看课本99页探究1

  问题:

  1题中有哪些已知量?哪些未知量?

  2题中等量关系有哪些?

  3如何解这个应用题?

  本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

  (2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

  练一练:

  1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

  2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

  3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

  4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

  二元一次方程组教案 篇3

  学习目标 :

  会运用代入消元法解二元一次方程组.

  学习重难点:

  1、会用代入法解二元一次方程组。

  2、灵活运用代入法的技巧.

  学习过程:

  一、基本概念

  1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

  2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

  3、代入消元法的步骤:

  二、自学、合作、探究

  1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

  2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

  3、若 的解,则a=______,b=_______。

  4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

  5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。

  6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。

  7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。

  8、当k=______时,方程组 的解中x与y的值相等。

  9、用代入法解下列方程组:

  ⑴ ⑵ ⑶

  二、训练

  1、方程组 的解是( )

  A. B. C. D.

  2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

  3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

  4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )

  A. B.2,1 C.-2,1 D.-1,0

  5、用代入法解下列方程组

  ⑴ ⑵

  6、如果(5a-7b+3)2+ =0,求a与b的值。

  7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m

  8、若方程组 与 有公共的解,求a,b.

  

 

文档

二元一次方程组教案3 篇

二元一次方程组教案3篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top