
恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。
一、分离参数
在给出的不等式中,如果能通过恒等变形分离出参数,即:若恒成立,只须求出,则;若恒成立,只须求出,则,转化为函数求最值。
例1、已知函数,若对任意恒有,试确定的取值范围。
解:根据题意得:在上恒成立,
即:在上恒成立,
设,则
当时, 所以
在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若恒成立,只须求出,则,然后解不等式求出参数的取值范围;若恒成立,只须求出,则,然后解不等式求出参数的取值范围,问题还是转化为函数求最值。
例2、已知时,不等式恒成立,求的取值范围。
解:令, 所以原不等式可化为:,
要使上式在上恒成立,只须求出在上的最小值即可。
二、分类讨论
在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。
例3、若时,不等式恒成立,求的取值范围。
解:设,则问题转化为当时,的最小值非负。
(1)当即:时, 又所以不存在;
(2)当即:时, 又
(3)当即:时, 又
综上所得:
三、确定主元
在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变量看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。
例4、若不等式对满足的所有都成立,求的取值范围。
解:设,对满足的,恒成立,
解得:
四、利用集合与集合间的关系
在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:,则且,不等式的解即为实数的取值范围。
例5、当时,恒成立,求实数的取值范围。
解:
(1)当时,,则问题转化为
(2)当时,,则问题转化为
综上所得:或
五、数形结合
数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。
例6、若不等式在内恒成立,求实数的取值范围。
解:由题意知:在内恒成立,
在同一坐标系内,分别作出函数和
观察两函数图象,当时,若函数的图象显然在函数图象的下方,所以不成立;
当时,由图可知,的图象必须过点或在这个点的上方,则,
综上得:
上面介绍了含参不等式中恒成立问题几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。
