最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2016第十四届小学“希望杯”全国数学邀请赛四年级 第2试试题解析

来源:动视网 责编:小OO 时间:2025-10-01 17:22:51
文档

2016第十四届小学“希望杯”全国数学邀请赛四年级 第2试试题解析

2016第十四届小学“希望杯”全国数学邀请赛四年级第2试试题解析2016年4月10日上午9:00-11:00一、解答题(每小题5分,共60分)1.计算:2016×2014-2013×2015+2012×2015-2013×2016=•【答案】1【考点】乘法分配律【解析】2016×2014-2013×2016-(2013×2015-2012×2015)=2016×(2014-2013)-(2013-2012)×2015=2016-2015=12.60的不同约数(1除外)的个数是.【答案】11【考
推荐度:
导读2016第十四届小学“希望杯”全国数学邀请赛四年级第2试试题解析2016年4月10日上午9:00-11:00一、解答题(每小题5分,共60分)1.计算:2016×2014-2013×2015+2012×2015-2013×2016=•【答案】1【考点】乘法分配律【解析】2016×2014-2013×2016-(2013×2015-2012×2015)=2016×(2014-2013)-(2013-2012)×2015=2016-2015=12.60的不同约数(1除外)的个数是.【答案】11【考
2016第十四届小学“希望杯”全国数学邀请赛四年级 第2试试题解析

2016年4月10日上午9:00-11:00

一、解答题(每小题5分,共60分)

1.计算:2016×2014-2013×2015+2012×2015-2013×2016= •

【答案】1

【考点】乘法分配律

【解析】

2016×2014-2013×2016-(2013×2015-2012×2015)

=2016×(2014-2013) -(2013-2012)×2015

=2016-2015

=1

2.60的不同约数(1除外)的个数是 .

【答案】11

【考点】枚举法

【解析】列举出60的约数,可以一对一对地找,60 = 1×60,60=2×30 ,60 =3×20 , 60=4×l5,60=5×12,60=6×10,所以60的约数有:1、2、3、4、5、 6、10、12、15、20、30、60,1 除外共 11 个.

3.今年丹丹4岁,丹丹的爸爸28岁,a年后,爸爸年龄是丹丹年龄的3倍,则a的值是_________。

【笞案】8

【考点】年龄问题、差倍问题.

【解析】无论今年还是0年后,丹丹和爸爸的年龄差是不变的。

a年后年龄差为:28-4=24 (岁〉

a年后丹丹年龄:24÷(3-1) =12 (岁〉

a就为:12-4=8 (年)

4.已知a比c大2,则三位数自然数(abc) ̅与(cba) ̅的差是 .

【答案】198

【考点】位值原理

【解祈】a比c大2,a-c=2,又

(abc) ̅=100a+10b+c,(cba) ̅=100c+10b +a,a-c=2,

(abc) ̅ -( cba) ̅

=100a+ 10b+ c -(100c +10b +a)

= 100(a-c)-(a-c)

= 99(a-c)

= 99×2 = 198

5.正方形A的边长是10,若正方形B、C的边长都是自然数,且B、C的面积和等于A的面积,则B和C的边长的和是________.

【答案】14

【考点】完全平方数

【解析】B、C的面积和等于A的面积=10×10=100,

设B的边长为b, C的边长为c,

所以b2+c2 =100,显然b=6,c=8或b=8,c=6,

所以B的边长和C的边长的和是6+ 8=14.

6.已知9个数的平均数是9,如果把其中一个数改为9后,这9个数的平均数变为8,那么这个被改动的数是______.

【答案】17

【考点】平均数

【解析】原来的9个数的总和是9×9 = 8l,把其中一个数改为9后,9个数的总和是9×8=72,所以被改动的数是(8l-72)+9 =l8.

7.如图1,水平相邻和竖直相邻的两个格点间的距离都是1,则图中阴影部分的面积是_________.

【答案】17

【考点】巧求面积

【解析】两个格点间的距离都是1,所以每个小正方形的面积是1×1 = 1,通过平移得到阴影部分总共有17个小正方形,所以阴影部分的面税是17×1=17.

两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的数是_________.

【答案】342

【考点】和倍问题

【解析】两个数的和是363,除数为1份,则被除数为16份还多6,16+1=17,所以 17份的和应为:

363-6=357较小数为:(363-6)÷(16+1)=21

较大数为:363-21 = 342

如图2,阴影部分是一个边长为6厘米的正方形,在它的四周有四个长方形,若四个长方形的周长的和是92厘米,则四个长方形的面积的和是__________平方厘米.

【答案】132

【考点】巧求面积

【解析】已知正方形的边长是6,设每个长方形的另一条边分别为a、b、c、d四个长方形的周长的和是92厘米,即(a+6+b+ 6+c+6+d+6)×2=92,a+b+c+d=22,四个长方形的面积等于6a+ 6b+6c+6d=6(a+b+c+d)=6×22 = 132(cm2)

有一根长240厘米的木棒,先从左端开始每隔7厘米划一条线,再从右端开始每隔 6厘米划一条线,并且从划线处截断木棒,则在所截得的小木棒中,长度是3厘米的木棒有____根.

【答案】12

【考点】最小公倍数、周期问题

【解析】甶于从右端开始6厘米划一条线,刚好能将240厘米分成整数段,所以可以看成从左端每隔6厘米划一条线。

6与7的最小公倍数为42 , 240 +42= 5…30,在每42厘米的完整周期里,长度是3厘米的有2段,在剩余的30厘米里,长度是3厘米的有2 段,所以长度是3厘米的木棒总共有2×5+2= 12.

在图3的9个方格中,每行、每列及每条对角线上三个数的和相等,则x+y+a+b+c+d=____________。

【答案】68

【考点】幻方

【解析】12 +d =15×2,d=18,b=(4+12)÷2 =8.

甶于每行、每列及每对角线上三个数的和相等,

x+12+y=b+d+y,所以x+12 =b+d,x=14 ,幻和为15+4+14=33,y=33-14-12=7, c=33-15-7=10,

a=33-12-10=11,x+y+a+b+c+d=14+7+11+8+10+18= 68.

甲、乙两人分别从A、B两地同时出发,相向而行,4小时可相遇;若两人的时速都增加3千米,则出发后3小时30分可相遇.A、B两地相距_____ 千米.

【答案】168

【考点】相遇问题

【解析】相遇问题路程=甲乙速度和×相遇时间,设甲乙的速度和为x,4x=(x+6)×3.5,x=42,所以路程=42×4=168 (千米〉.

二、解答题(每小题15分,共60分)每题都要写出推算过程.

如图4,用正方形a、b、c、d拼成一个长30厘米,宽22厘米的长方形,求正方形e的面积.

【答案】36

【考点】巧求面积

【解析】观察图可发现,设正方形a、b、c、d的边长为a1、b1、c1、d1、e1

a1+b1= 22. a1 + b1 + c1=30,c1 = 8,

c1+ c1+e1= 22,8+8+e1 =22,e1 = 6.

则正方形的e的面积为6×6=36 (平方厘米).

有两块地,平均亩产粮食675千克,其中第一块地是5亩,亩产粮食705千克.如果第二块地亩产粮食650千克,那么第二块地有多少亩?

【答案】6

【考点】平均数

【解祈】移多补少,第一块地每块多:705-675 = 30 (千克)

第一块地总共多:30×5=150 (千克〉

第二块地每块少:675-650 = 25 (千克)

亩数:150÷25=6 (亩〉

答:第二块地有6亩.

4个连续的自然数,从小到大依次是11的倍数、7的倍数、5的倍数、3的倍数, 求这4个自然数的和的最小值.

【答案】1458

【考点】数论

【解析】设最小的数位11k,从小到大依次为llk+1、llk+ 2、llk+3;

llk + l为 7 的倍数,k= 5,12,19,26,33,40…

llk +2为5 的倍数,k=3,8,13,18,23,28,33,38…

llk + 3 为 3 的倍数, k = 3,6,9,12,15,18,24,27 ,30,33…

显然,k最小的值为33,四个数从小到大依次为363、3、365、366,四个数的和的最小值为363+3+365+366 = 1458.

有6个密封的盒子,分别装有红球、白球、和黑球,每个盒子里只有一种颜色的球,且球的个数分别是15、16、18、19、20、31,已知黑球的个数是红球个数的2倍,装白球的盒子只有1个.问:

装有15个球的盒子里装的是什么颜色的球?

有多少个盒子里装的是黑球?

【答案】(1)红球;(2)3.

【考点】智力趣巧,枚举法

【解祈】已知黑色的个数是红球个数的2倍,所以黑球与红球个数的总和一定为3的倍数

设15个球的为白球,剩下五个盒子的和16 + 18 + 19 + 20十31=104不符合;

设16个球的为白球,剩下五个盒子的和15+l8+19 +20+31=103不符合;

设18个球的为白球,剩下五个盒子的和15+16 + 19+20+31=101,不符合;

设19个球的为白球,刺下五个盒子的和15+16 + l8 +20+31= 100,不符合;

设20个球的为白球,剩下五个盒子的和15+16+18+

19+31 =99,符合;

设31个球的为白球,刺下五个盒子的和15+16+l8+19+20 = 88,不符合; 所以装有20个球的盒子是白球.

此时,剩下的5个盒子为15, 16, 18, 19, 31,

99÷(1+2)= 33,说明红球总数量为33个,经试验装有15, 18的盒子为红球,装有16, 19, 31的盒子为黑球;

从以上结论得出,装有15个球的盒子里装的是红球;

有3个盒子里装的是黑球. 

文档

2016第十四届小学“希望杯”全国数学邀请赛四年级 第2试试题解析

2016第十四届小学“希望杯”全国数学邀请赛四年级第2试试题解析2016年4月10日上午9:00-11:00一、解答题(每小题5分,共60分)1.计算:2016×2014-2013×2015+2012×2015-2013×2016=•【答案】1【考点】乘法分配律【解析】2016×2014-2013×2016-(2013×2015-2012×2015)=2016×(2014-2013)-(2013-2012)×2015=2016-2015=12.60的不同约数(1除外)的个数是.【答案】11【考
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top