
一、研究的目的要求
研究财政收入的影响因素离不开一些基本的经济变量。大多数相关的研究文献中都把总税收、国内生产总值这两个指标作为影响财政收入的基本因素,还有一些文献中也提出了其他一些变量, 比如其他收入、经济发展水平等。影响财政收入的因素众多复杂, 但是通过研究经济理论对财政收入的解释以及对实践的观察, 对财政收入影响的因素主要有总税收、国内生产总值、就业人数等。本文针对我国财政收入影响因素建立了计量经济模型,并利用Eviews软件对收集到的数据进行相关回归以及多重共线性分析,建立了财政收入影响因素的模型,分析了影响财政收入主要因素及其影响程度,并提出了相关建议。
二、模型设定及其估计
经分析,影响我国财政收入影响财政收入的因素众多复杂,本文从财政支出、国内生产总值、年末从业人员数、税收总额四方面进行分析。以国家财政收入为被解释变量,财政支出、国内生产总值、年末从业人员数、税收总额作为解释变量建立线性回归模型:
Y=β0+β1X1+β2X2 +β3X3+β4X4+ui
其中,Y—— 财政收入 —— 财政支出
——国内生产总值 ——年末从业人员数
—— 税收总额
为估计模型参数,收集了1991-2010年的统计数据,如下表所示
1991-2010影响财政收入的因素的数据 表1
| 年 份 | 财 政 收 入 | 财 政 支 出 | 国内生产总值 | 年末从业人员数 | 税 收 总 额 | |
| (亿元) | (亿元) | (亿元) | (万人) | (亿元) | ||
| 1991 | 3149.48 | 3386.62 | 21826.2 | 65491 | 2990.17 | |
| 1992 | 3483.37 | 3742.2 | 26937.3 | 66152 | 3296.91 | |
| 1993 | 4348.95 | 42.3 | 35260 | 66808 | 4255.3 | |
| 1994 | 5218.1 | 5792.62 | 48108.5 | 67455 | 5126.88 | |
| 1995 | 6242.2 | 6823.72 | 59810.5 | 68065 | 6038.04 | |
| 1996 | 7407.99 | 7937.55 | 70142.5 | 650 | 6909.82 | |
| 1997 | 8651.14 | 9233.56 | 78060.9 | 69820 | 8234.04 | |
| 1998 | 9875.95 | 10798.18 | 83024.3 | 70637 | 9262.8 | |
| 1999 | 11444.08 | 13187.67 | 88479.2 | 71394 | 10682.58 | |
| 2000 | 13395.23 | 15886.5 | 98000.5 | 72085 | 12581.51 | |
| 2001 | 16386.04 | 102.58 | 108068.2 | 72797 | 15301.38 | |
| 2002 | 103. | 22053.15 | 119095.7 | 73280 | 17636.45 | |
| 2003 | 21715.25 | 249.95 | 135174 | 73736 | 20017.31 | |
| 2004 | 26396.47 | 28486. | 159586.8 | 742 | 24165.68 | |
| 2005 | 319.29 | 33930.28 | 183618.5 | 747 | 28778.54 | |
| 2006 | 38760.2 | 40422.73 | 215883.9 | 74978 | 34804.35 | |
| 2007 | 51321.78 | 49781.35 | 2611 | 75321 | 45621.97 | |
| 2008 | 61330.35 | 62592.66 | 315274.7 | 755 | 54223.79 | |
| 2009 | 68518.3 | 76299.93 | 341401.5 | 75828 | 59521.59 | |
| 2010 | 83101.51 | 874.16 | 403260 | 76105 | 73210.79 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/30/13 Time: 20:20 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 13451.66 | 2790.361 | 4.820759 | 0.0002 |
| X1 | 0.075726 | 0.029590 | 2.559157 | 0.0218 |
| X2 | 0.017720 | 0.010127 | 1.749771 | 0.1006 |
| X3 | -0.214021 | 0.043506 | -4.919354 | 0.0002 |
| X4 | 0.990352 | 0.061851 | 16.01195 | 0.0000 |
| R-squared | 0.999924 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.999904 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 234.1815 | Akaike info criterion | 13.96239 | |
| Sum squared resid | 822614.8 | Schwarz criterion | 14.21132 | |
| Log likelihood | -134.6239 | F-statistic | 49549.63 | |
| Durbin-Watson stat | 2.120774 | Prob(F-statistic) | 0.000000 | |
t=(4.820759)(2.559157)(1.749771)(-4.919354)(16.01195)
R2=0.999924 =0.999904 F=49549.63 DW=2.120774
由此可见,该模型=0.999924, =0.999904可决系数很高,F检验值49549.63,明显显著,但是当α=0.05时, (n – k)= (20-4)=2.120,不仅、的系数t检验不显著,而且的系数的符号与预期相反,这表明很可能存在严重的多重共线性。
三、多重共线性的检验和修正
多重共线性的检验:
计算各解释变量的相关系数,得相关系数矩阵如下:
| X1 | X2 | X3 | X4 | |
| X1 | 1 | 0.994123826042 | 0.8253147283 | 0.997410960034 |
| X2 | 0.994123826042 | 1 | 0.861030616584 | 0.99713298 |
| X3 | 0.8253147283 | 0.861030616584 | 1 | 0.830723342128 |
| X4 | 0.997410960034 | 0.99713298 | 0.830723342128 | 1 |
修正多重共线性
分别采用逐步回归的办法,去检验和解决多重共线性问题。分别作Y对 、、、的一元回归,结果如下表所示。
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/30/13 Time: 21:45 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -318.8016 | 540.0402 | -0.590329 | 0.5623 |
| X1 | 0.941810 | 0.014932 | 63.07431 | 0.0000 |
| R-squared | 0.995496 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.995246 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 19.250 | Akaike info criterion | 17.74867 | |
| Sum squared resid | 460463 | Schwarz criterion | 17.84824 | |
| Log likelihood | -175.4867 | F-statistic | 3978.368 | |
| Durbin-Watson stat | 1.178424 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/30/13 Time: 21:50 | ||||
| Sample: 1999 2010 | ||||
| Included observations: 12 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -1782.269 | 1019.555 | -1.748085 | 0.1110 |
| X2 | 0.155224 | 0.013393 | 11.565 | 0.0000 |
| R-squared | 0.930710 | Mean dependent var | 9042.181 | |
| Adjusted R-squared | 0.923780 | S.D. dependent var | 5130.406 | |
| S.E. of regression | 1416.396 | Akaike info criterion | 17.50063 | |
| Sum squared resid | 20061790 | Schwarz criterion | 17.58145 | |
| Log likelihood | -103.0038 | F-statistic | 134.3200 | |
| Durbin-Watson stat | 0.304979 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/30/13 Time: 21:51 | ||||
| Sample: 1999 2010 | ||||
| Included observations: 12 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -1209.6 | 10145.61 | -11.92285 | 0.0000 |
| X3 | 1.872995 | 0.146069 | 12.82271 | 0.0000 |
| R-squared | 0.942668 | Mean dependent var | 9042.181 | |
| Adjusted R-squared | 0.936935 | S.D. dependent var | 5130.406 | |
| S.E. of regression | 1288.391 | Akaike info criterion | 17.31119 | |
| Sum squared resid | 16599504 | Schwarz criterion | 17.39200 | |
| Log likelihood | -101.8671 | F-statistic | 1.4219 | |
| Durbin-Watson stat | 0.443831 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/30/13 Time: 21:52 | ||||
| Sample: 1999 2010 | ||||
| Included observations: 12 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -183.7221 | 56.206 | -3.268690 | 0.0084 |
| X4 | 1.082049 | 0.005819 | 185.9513 | 0.0000 |
| R-squared | 0.999711 | Mean dependent var | 9042.181 | |
| Adjusted R-squared | 0.999682 | S.D. dependent var | 5130.406 | |
| S.E. of regression | 91.49262 | Akaike info criterion | 12.02141 | |
| Sum squared resid | 83709.00 | Schwarz criterion | 12.10222 | |
| Log likelihood | -70.12843 | F-statistic | 34577.88 | |
| Durbin-Watson stat | 1.772665 | Prob(F-statistic) | 0.000000 | |
| 变量 | ||||
| t统计量 | 63.07431 | 11.565 | 12.82271 | 185.9513 |
| 0.995496 | 0.93071 | 0.942268 | 0.999711 | |
| 0.995246 | 0.923780 | 0.936935 | 0.999682 |
加入新变量的回归结果(一)
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 17:27 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -770.9700 | 133.9451 | -5.755867 | 0.0000 |
| X1 | 0.088021 | 0.050470 | 1.744040 | 0.0992 |
| X4 | 1.039638 | 0.061297 | 16.96075 | 0.0000 |
| R-squared | 0.999749 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.999719 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 400.8759 | Akaike info criterion | 14.96266 | |
| Sum squared resid | 2731925. | Schwarz criterion | 15.11202 | |
| Log likelihood | -146.6266 | F-statistic | 33812.68 | |
| Durbin-Watson stat | 0.566775 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 17:29 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -243.7025 | 296.1522 | -0.8226 | 0.4220 |
| X2 | -0.022238 | 0.010572 | -2.103478 | 0.0506 |
| X4 | 1.2440 | 0.056342 | 22.44222 | 0.0000 |
| R-squared | 0.999765 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.999737 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 387.7219 | Akaike info criterion | 14.593 | |
| Sum squared resid | 2555581. | Schwarz criterion | 15.04529 | |
| Log likelihood | -145.9593 | F-statistic | 36146.45 | |
| Durbin-Watson stat | 1.347835 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 17:30 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 10212.97 | 2254.9 | 4.529739 | 0.0003 |
| X3 | -0.160692 | 0.032854 | -4.1058 | 0.0001 |
| X4 | 1.168781 | 0.005541 | 210.9194 | 0.0000 |
| R-squared | 0.999877 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.999862 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 280.5409 | Akaike info criterion | 14.24880 | |
| Sum squared resid | 1337954. | Schwarz criterion | 14.39816 | |
| Log likelihood | -139.4880 | F-statistic | 69049.86 | |
| Durbin-Watson stat | 2.404257 | Prob(F-statistic) | 0.000000 | |
| , | 0.08821 | 1.039638 | 0.999719 | ||
| (-1.74404) | (16.96075) | ||||
| , | -0.022238 | 1.244 | 0.999737 | ||
| (-2.103478) | (22.44222) | ||||
| , | -0.16069 | 1.168781 | 0.999877 | ||
| (-4.106) | (210.9194) |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 18:19 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 9855.563 | 2005.337 | 4.914667 | 0.0002 |
| X1 | 0.074456 | 0.031429 | 2.3691 | 0.0308 |
| X3 | -0.155056 | 0.029235 | -5.303685 | 0.0001 |
| X4 | 1.077796 | 0.038719 | 27.83605 | 0.0000 |
| R-squared | 0.999909 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.9992 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 248.8124 | Akaike info criterion | 14.04813 | |
| Sum squared resid | 990521.4 | Schwarz criterion | 14.24728 | |
| Log likelihood | -136.4813 | F-statistic | 58523.98 | |
| Durbin-Watson stat | 1.926348 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 18:20 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 13685.94 | 3236.555 | 4.228552 | 0.0006 |
| X2 | 0.017085 | 0.011749 | 1.454084 | 0.1653 |
| X3 | -0.217635 | 0.050463 | -4.312729 | 0.0005 |
| X4 | 1.085970 | 0.057203 | 18.98446 | 0.0000 |
| R-squared | 0.9991 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.999871 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 271.7747 | Akaike info criterion | 14.22468 | |
| Sum squared resid | 1181784. | Schwarz criterion | 14.42383 | |
| Log likelihood | -138.2468 | F-statistic | 49051.46 | |
| Durbin-Watson stat | 2.528001 | Prob(F-statistic) | 0.000000 | |
| 0.074456 | -0.029235 | 1.077796 | 0.9992 | ||
| (2.3691) | (-5.303685) | (27.83605) | |||
| , | 0.017085 | -0.217635 | 1.08597 | 0.999871 | |
| (1.454084) | (-4.312729) | (18.98446) |
最后修正严重多重共线性影响后的回归结果为:
=9855.536+0.074456X1-0.029235X3+1.077796X4
t=(4.914667)(2.3691)(-5.303685)(27.83605)
R2=0.999909 =0.9992 F=58523.98 DW=1.926348
四、异方差的检验和修正
Goldfeld-Quanadt检验:
由于n=20 删除五分之一的观测值,也就是大约4个观测值,余下部分平分得到两个样本区间:1991~1998和2003~2010,它们的样本个数均为8个,即n1=n2=8。采用OLS进行估计
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 19:26 | ||||
| Sample: 1991 1998 | ||||
| Included observations: 8 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -5083.252 | 18547.51 | -0.274067 | 0.7976 |
| X1 | 0.565318 | 0.318056 | 1.777419 | 0.1501 |
| X3 | 0.079475 | 0.292652 | 0.271568 | 0.7994 |
| X4 | 0.352606 | 0.445335 | 0.791777 | 0.4728 |
| R-squared | 0.999001 | Mean dependent var | 6047.148 | |
| Adjusted R-squared | 0.998252 | S.D. dependent var | 2445.727 | |
| S.E. of regression | 102.2605 | Akaike info criterion | 12.39978 | |
| Sum squared resid | 41828.86 | Schwarz criterion | 12.43950 | |
| Log likelihood | -45.59911 | F-statistic | 1333.346 | |
| Durbin-Watson stat | 1.432862 | Prob(F-statistic) | 0.000002 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 19:27 | ||||
| Sample: 2003 2010 | ||||
| Included observations: 8 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -52904.93 | 54297.14 | -0.974359 | 0.3851 |
| X1 | 0.101295 | 0.055324 | 1.830919 | 0.1411 |
| X3 | 0.7016 | 0.741480 | 0.946301 | 0.3976 |
| X4 | 1.009549 | 0.085572 | 11.79767 | 0.0003 |
| R-squared | 0.999825 | Mean dependent var | 47849.14 | |
| Adjusted R-squared | 0.999693 | S.D. dependent var | 21882.76 | |
| S.E. of regression | 383.1202 | Akaike info criterion | 15.04143 | |
| Sum squared resid | 587124.3 | Schwarz criterion | 15.08115 | |
| Log likelihood | -56.16571 | F-statistic | 7610.881 | |
| Durbin-Watson stat | 1.848470 | Prob(F-statistic) | 0.000000 | |
F== =14.036345
判断
在α=0.05下,分子分母的自由度都是(20-4)/2-4=4,查F分布表得到临界值F0.05(4,4)=6.39,因为F=14.036345 > F0.05(4,4)=6.39,所以拒绝原假设,表明模型存在异方差。
异方差的修正
修正后得:
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 05/31/13 Time: 21:54 | ||||
| Sample: 1991 2010 | ||||
| Included observations: 20 | ||||
| Weighting series: W1 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 9651.242 | 714.0265 | 13.516 | 0.0000 |
| X1 | 0.043862 | 0.028407 | 1.5440 | 0.1421 |
| X3 | -0.152218 | 0.010820 | -14.06779 | 0.0000 |
| X4 | 1.113357 | 0.030817 | 36.12774 | 0.0000 |
| Weighted Statistics | ||||
| R-squared | 0.999999 | Mean dependent var | 22907.82 | |
| Adjusted R-squared | 0.999999 | S.D. dependent var | 58084.06 | |
| S.E. of regression | 58.85521 | Akaike info criterion | 11.1 | |
| Sum squared resid | 55422.97 | Schwarz criterion | 11.304 | |
| Log likelihood | -107. | F-statistic | 1116847. | |
| Durbin-Watson stat | 1.241857 | Prob(F-statistic) | 0.000000 | |
| Unweighted Statistics | ||||
| R-squared | 0.999901 | Mean dependent var | 245.97 | |
| Adjusted R-squared | 0.999883 | S.D. dependent var | 23918.97 | |
| S.E. of regression | 258.7312 | Sum squared resid | 1071069. | |
| Durbin-Watson stat | 2.135772 | |||
再次检验
| White Heteroskedasticity Test: | ||||
| F-statistic | 2.017430 | Probability | 0.168011 | |
| Obs*R-squared | 12.49475 | Probability | 0.186832 | |
| Test Equation: | ||||
| Dependent Variable: RESID^2 | ||||
| Method: Least Squares | ||||
| Date: 06/06/13 Time: 22:24 | ||||
| Sample: 1991 2008 | ||||
| Included observations: 18 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 5.55E-09 | 5.30E-09 | 1.047996 | 0.3253 |
| X1 | -2.95E-14 | 4.31E-13 | -0.068438 | 0.9471 |
| X1^2 | 3.02E-18 | 5.28E-18 | 0.571416 | 0.5834 |
| X1*X3 | 2.15E-19 | 6.31E-18 | 0.034076 | 0.9737 |
| X1*X4 | -6.52E-18 | 1.09E-17 | -0.596705 | 0.5672 |
| X3 | -1.66E-13 | 1.55E-13 | -1.066536 | 0.3173 |
| X3^2 | 1.24E-18 | 1.13E-18 | 1.0168 | 0.3078 |
| X3*X4 | -7.67E-19 | 7.06E-18 | -0.108702 | 0.9161 |
| X4 | 6.97E-14 | 4.82E-13 | 0.144758 | 0.8885 |
| X4^2 | 3.54E-18 | 5.59E-18 | 0.633287 | 0.5442 |
| R-squared | 0.694153 | Mean dependent var | 2.57E-12 | |
| Adjusted R-squared | 0.350075 | S.D. dependent var | 4.59E-12 | |
| S.E. of regression | 3.70E-12 | Akaike info criterion | -49.50901 | |
| Sum squared resid | 1.09E-22 | Schwarz criterion | -49.01436 | |
| Log likelihood | 455.5811 | F-statistic | 2.017430 | |
| Durbin-Watson stat | 2.698321 | Prob(F-statistic) | 0.168011 | |
五、自相关
采用DW检验法,检验结果如下:
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/06/13 Time: 22:08 | ||||
| Sample: 1991 2008 | ||||
| Included observations: 18 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 9651.242 | 2.23E-05 | 4.33E+08 | 0.0000 |
| X1 | 0.043862 | 5.94E-10 | 73903166 | 0.0000 |
| X3 | -0.152218 | 3.31E-10 | -4.59E+08 | 0.0000 |
| X4 | 1.113357 | 6.36E-10 | 1.75E+09 | 0.0000 |
| R-squared | 1.000000 | Mean dependent var | 18867.36 | |
| Adjusted R-squared | 1.000000 | S.D. dependent var | 17021.49 | |
| S.E. of regression | 1.82E-06 | Akaike info criterion | -23.40411 | |
| Sum squared resid | 4.63E-11 | Schwarz criterion | -23.20625 | |
| Log likelihood | F-statistic | 4.97E+20 | ||
| Durbin-Watson stat | 1.601498 | Prob(F-statistic) | 0.000000 | |
DL 为解决自相关问题,选用迭代法 经过一系列的检验和修正,最终得出以下结果: =9881.538-0.003010X1-0.155197X3+1.167675X4 t=(4.165588)(-0.083293)(-4.490022)(29.71029) R2=0.999962 =0.999949 F=78035.15 DW=1.934472 六、经济意释与建议 经济意释: 1、 从模型可以看出,在我国,税收收入与财政收入存在着高度的正相关,税收收入的增长对财政收入的增长有重大的促进作用;税收收入每增加1%,财政收入就增加1.167675%; 2、 财政支出和从业人员数对财政收入也有一定影响; 3、 国内生产总值对财政收入的影响不显著。 建议: 1、加强税收征管,从而保证财政收入的稳定增长; 2、财政支出是实现国家职能的财力保证,收入是支出的前提和资金来源,有收才能有支,收入规模制约着支出的规模,在经济工作中,财政收支应是适应经济发展的客观要求,做到在年度计划中基本平衡,在执行中力争收大于支、略有结余,实现财政收支平衡。合理安排财政支出,提高财政支出对财政收入的回报率; 3、提高劳动力素质,增加劳动力对财政收入的贡献率,大力发展经济和第三产业,增加劳动力的就业率,减少失业。
DW=1.934472,DU<1.934472<4-DU,所以模型中随机误差项之间不存在自相关。Dependent Variable: Y Method: Least Squares Date: 06/14/13 Time: 19:45 Sample(adjusted): 1992 2008 Included observations: 17 after adjusting endpoints Convergence achieved after 7 iterations Variable Coefficient Std. Error t-Statistic Prob. C 9881.538 2372.183 4.165588 0.0013 X1 -0.003010 0.036136 -0.083293 0.9350 X3 -0.155197 0.034565 -4.490022 0.0007 X4 1.167675 0.039302 29.71029 0.0000 AR(1) 0.4081 0.275238 1.476832 0.1655 R-squared 0.999962 Mean dependent var 19795.88 Adjusted R-squared 0.999949 S.D. dependent var 17078.00 S.E. of regression 122.2682 Akaike info criterion 12.69024 Sum squared resid 179394.1 Schwarz criterion 12.93530 Log likelihood -102.8670 F-statistic 78035.15 Durbin-Watson stat 1.934472 Prob(F-statistic) 0.000000 Inverted AR Roots .41
