
教育家布鲁纳说过:“探索是数学的生命线”,没有探索,便没有数学的发展。想要教好数学就要不断的反思,下面是小编整理的关于期末教学反思初中数学,欢迎阅读参考。
篇一:期末教学反思初中数学
新课程改革已经伴随我们师生一段时间了,课改后的数学课堂教学应该怎样满足学生的需要,是摆在所有数学教师面前的一个难题,记得我们小学毕业时,必须通过考试择优后,才能进入中学。而今天改变了很多,小学毕业不论成绩的高低可以直接升入中学,这就直接导致了学生之间成绩的差异,由于起点不同,这给中学教师到来很大的问题。关于如何开展数学教学?值得我们思考。我们必须改变传统的教学模式,积极努力探求新的教学方法,以适应新课程改革下的学生。
一、一切从学生的实际情况出发
初中学生性格特点鲜明,说他们成熟,有些时候不成熟;说他们不成熟,有些时候成熟。他们对身边的事物充满好奇,他们思维能力高速发展,对待问题时总有自己独特的见解,但想法又不一定成熟;原因是因为缺乏处理问题的经验,基础知识掌握得还不够扎实。这就要求我们教师在教学时必须转变传统的教育观念与教育方式,不要一味地追求知识的传授与灌输,不要只注重于学生学习的结果,而应该是注重学生得学习过程,对知识的理解掌握,创造适合这个年龄段学生的学习环境,要让学生通过自愿交流、主动合作、自主探究来发现知识、理解知识、运用知识,使他们的思维得到迅速发展,经验得到积累。
二、培养并发展学生的能力
新课程标准要求:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”
在数学教学中不能单纯地强化学生记忆数学知识,而应注重培养的能力。传统的教学中,教师是课堂的控制者、主宰者,是学生创新的终结者,把学生当成了学习的机器,课堂上以讲授知识为主,很少让学生发言,练习和测试时只看重学生对知识掌握的关于如何,根本不会考虑到学生能力的发展。学生对学到的知识也只是依样画葫芦,不求甚解,只要能会做题即可,很少能弄明白原因,更别说灵活地运用知识。这说明学生在学习过程中没有真正地掌握知识,没有把知识变成自己的,也就达不到学习的目的,没有形成一定的能力。所以,在以往的教学中,我们培养了很多高分低能的人。
“发现问题和系统阐述问题,要比得到答案更重要。”爱因斯坦的话再次说明,过程比结果更重要。因此,教师必须转变教育观念和教学行为,认识到在教学中教师与学生是平等的。在教学中要鼓励学生质疑,并以真诚的态度做以解答,在质疑----讨论----解答的过程中培养学生的发展与创新精神,提高学生的创新能力。
在新的课改理念下,教师必需更新观念,转变教学方式,把学生当成课堂的主人,让他们成为课堂上的思想者,知识的构建者和收获者。通过学生学习方式的转变,有效的促进学生的动手实践、自主探索与合作交流等能力。
三、要明确数学的教学目的
数学对我国现代化起到的作用是多方面的。学生只有意识到数学存在于现实之中,将数学知识以实际生活联系起来,才能体会到数学的应用价值。新的数学教学理念要求“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”在教学中教师只有更新教学理念,运用数学与实际生活的联系进行教学,让学生认识到数学源于生活,用于生活。
当面对基础差距较大,参差不齐的学生时,怎样对他们进行有效的教学是一个值得深思的问题。那种一刀切式的应试教育的教学方式是不符合现代教育需求的,而教学中采取注入式教学和“题海”式战术,更是不符合学生思维发展实际的强迫教学,抑制了学生的思维发展。只有明确数学教育不可能也不需要把每一个学生都培养成数学家,只要能培养学生良好的思维习惯,学习习惯,知道生活中处处有数学,增强学数学,用数学的意识,从而能够积极主动探寻数学知识,最终得到不同的发展。
因此,在数学的课堂教学中要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣。数学教学不再是教师的个人舞台,而是师生双边实现自己生命价值和自身发展的舞台。在数学的课堂上,我会将学生按照他们的学习基础、性格、表现能力、社交能力、思维能力等综合考虑,分成小组让学生在课堂教学中通过交流、合作、探究来获取数学知识,鼓励他们说出自己的见解,充分调动每一位学生的积极性,培养他们的自信心。
在数学课堂上教师教学观念的升华,将直接影响学生对数学的学习和不同层次的学生在数学方面的发展,作为数学教师必须更新教学观念,在更新中求发展,在更新中提高教学质量。
期末教学反思初中数学【2】
数学是思维的体操,促进学生的思维发展是我们数学课堂教学的灵魂。教者在教学人教版七年级数学第九章《不等式》一元一次不等式组的过程中,以学生思维发展为主线展开教学,教学效果良好。现把本节教学反思如下。
教材问题:现有两根木条 a和b,a长10cm,b长3cm,如果再找一根木条c,用这三根木条钉成一个三角形木板,那么对木条c的长度有什么要求?同时教材还有一个探究:用三根长度分别为14cm,9cm,6cm的木条分别试试,其中哪根木条跟a和b一起钉成三角形木框?
教者教学时,让学生用纸条代替木条进行探究,很快发现14cm的木条太长,6cm的木条太短,9cm的木条可以与木条a和b钉成三角形木框。通过探究,感知木条c要有一个范围,不能太长也不能太短。接下来回忆三角形的三边的数量关系。内容实际有两部分,一是"三角形的两边之和大于第三边",在本学期第七章《三角形》中作为重要结论学习,学生有较多的经验;二是"三角形的任意两边之差小于第三边",是本章根据不等式的性质推导得到的。
然后学生探索解题。设木条c长为xcm,根据三角形的三边的关系列出不等式。课本给出两个不等式x<10+3,x>10-3。最后,类比方程组的概念,得出一元一次不等式组的概念。
现在让我们重点分析学生的探索解题过程。备课时教者的问题有:学生能否列出和课本相同的不等式?如果得不到我们关于如何引导?如果得到的是其他的不等式我们关于如何处理?列出了不等式,是否也能说出列不等式的理由?
通过教学时的观察,学生做法大概有以下几种:
1.有一部分学生列出的不等式10+3>x和10-3<x。分析学生的思维过程,列出这样的不等式的同学,自然是直接运用了数量关系"三角形中两边之和大于第三边,三角形中两边之差小于第三边。"这些同学受到复习内容的影响较大。
2.列出不等式x<10+3和x>10-3的同学思维要多一步,根据不等式的对称性由不等式10+3>x和10-3<x转化而来。或是把"三角形中两边之和大于第三边,三角形中两边之差小于第三边。"转化为"三角形的一边应小于另外两边之和,且大于另外两边之差。"更简单一些说,三角形的第三边不能太长,最长也要小于已知两边的和,不能太短,最短也要大于已知两边之差。这些同学思维较灵活。
3.有一部分同学列出了x+3>10,10+3>x,x+10>3中的两个或三个。分析学生的思维过程,他们列不等式的依据是"三角形中任意
两边的和大于第三边"。如果给与指导,他们就会加以筛选,只列出前两个。根据经验,在三条线段中只要看较短的两条线段的和是否大于最长边,就可以判断这三条线段能否组成三角形。
4.利用"三角形中任意两边的差小于第三边"也可以列出一些不等式。它们是10-3<x,3-10<x,x-10<3,10-x<3,x-3<10,3-x<10。学生很少有这样做的,关于如何筛选也比较困难。
可以看出,由于学生的知识结构的差异思维品质的不同,其解题的方法也不相同。面对学生各种解法,笔者让同学们先小组讨论,充分暴露思维过程,然后全班讨论,对各种解法及思维过程给与评价。本节课的教学效果很好,在学习知识的同时发展了学生的思维。下面就关于如何发展学生的思维浅析自己的一些看法。
一、暴露思维过程,发展学生思维。
暴露思维过程是发展学生思维的有效手段。教学活动中,师生双方都必须充分暴露思维过程。教师要经常把自己置于困境中,然后再现从中走出来的过程,让学生看到教师的思维过程。学生自己动脑、动手,在尝试、探索的过程中,鼓励学生发表自己的看法,充分暴露学生的思维,通过的交流,从而找到解决问题的方法。我们要在暴露学生思维的过程中,评价学生的思路,改善学生的思维品质,着重培养思维的敏捷和灵活,使他们在分析中学会思考,需要把面对的
问题通过转化、分析、综合、假设、对比等中求得简捷,在运用中变得灵活,在疏漏后学得缜密。
二、抓住知识间的内在联系,发展学生思维。
系统性、逻辑性是数学的主要特征之一。数学本身的知识间的内在联系是很紧密的,各部分知识都不是孤立的,而是一个结构严密的整体。数学教学主要是思维活动的教学,只有根据学生的认知特点,引导学生按照思维过程的规律进行思维活动,才能提高学生的思维能力。为此,教学应从较好的知识结构出发,把教学的重点放在引导学生分析数量关系上,依据知识之间的逻辑关系和迁移条件,引导学生抓住旧知识与新知识的连接点,抓住知识的生长点,抓住逻辑推理的新起点。这样就自然地把新的知识与已有的知识科学地联系起来。新的知识一经建立,便会纳入到学生原有的认知结构中去,建成新的知识系统。
三、激发求知欲望,发展学生思维在课堂教学中,教师生动活泼的教学语言,可感具体的教学内容,灵活多样的教学形式,在唤起学生数学思维情趣的基础上,适时适度地,让学生在"心求通而未通"、"口欲书而不能"的"愤徘"状态之中,这种"道弗牵、强弗抑、开弗达"的思维激发,有助于学生的数学思维欲望的提高,有助于学生探究数学知识,数学问题的兴趣。这样,
学生的思维活动也就启动、开展,学生的数学思维能力和素质得到发展,得到提高。
赞可夫有可名言:"教会学生思考,对学生来说,是一生中最有价值的本钱。"那么促进学生数学思维的发展就是我们一直永恒不变的追求。
[期末教学反思初中数学]
