
【专题简析】
小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
【例题1】 奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。问1千克梨和1千克荔枝各多少元?
【思路导航】我们可以把两次买的情况摘录下来进行比较:
4千克梨+5千克荔枝=58元 (1)
6千克梨+5千克荔枝=62元 (2)
比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一
1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。一筐苹果和一筐橘子各重多少千克?
1,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。现在张老师买7本童话书和6本故事书,共需多少元?
3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。一袋大米和一袋面粉各重多少千克?
【例题2】 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。一个足球和一个排球各多少元?
【思路导航】我们可以把两次买的情况摘录下来进行比较:
3个足球+4个排球=190元 (1)
6个足球+2个排球=230元 (2)
我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。再观察我们可以发现:如果把(1)式同时扩大2倍,得到6个足球和8个排球共380元,然后再与(2)式进行比较,发现足球个数相同,而排球多了6个,也就多了380-230=150元,也就是6个排球是150元,一个排球为150÷6=25元,那么一个足球是(190-25×4)÷3=30元。
练习二
1,5筐番茄和2筐黄瓜共重330千克,3筐番茄和4筐黄瓜共重310千克。一筐番茄和一筐黄瓜各重多少千克?
2,4本练习本和5枝圆株笔共14元,2本练习本和4枝圆珠笔共10元。一本练习本和一枝圆珠笔各多少元?
3,2件上衣和3条裤子共480元,4件上衣和2条裤子共0地。一件上衣和一条裤子各多少元?
【例题3】 商店里有一些气球,其中红气球和蓝气球共21只,蓝气球和黄气球共28只,黄气球和红气球共29只。红气球、蓝气球和黄气球各有多少只?
【思路导航】根据题意,我们可以列出下列关系式:
红气球的个数+蓝气球的个数=21 (1)
蓝气球的个数+黄气球的个数=28 (2)
黄气球的个数+红气球的个数=29 (3)
我们可将(1)+(2)+(3),即21+28+29=78只,这里包含有2倍红气球的个数、2倍蓝气球的个数和2倍黄气球的个数,由此,可得出三种气球的总只数:78÷2=39只。然后再根据红气球和蓝气球共21只,可求出黄气球的只数:39-21=18只;同理可求出红气球的个数是39×28=11只,蓝气球的个数是39-29=19只。
练习三
1. 小明和小红共12岁,小红和小丽共17岁,小丽和小明共13岁。三人各多少岁?
2.新华书店有批书,故事书和连环画共70本,连环画和科技书共82本,科技书和故事书共76本。三种书各多少本?
3.公园开菊花展,白菊花和花共152盆,花和红菊花共128盆,红菊花和白菊花共168盆。三种菊花各几盆?
【例题4 】 三年级三个班种了一片小树林,其中72棵不是一班种的,75棵不是二班种的,73棵不是三班种的。三个班各种了多少棵?
【思路导航】“72棵不是一班种的”,说明二班和三班共种树72棵;“75棵不是二班种的”,说明一班和三班共种75棵,“73棵不是三班种的”,说明一班和二班共种73棵。这样,我们就可以求出三个班共种多少棵树:(72+75+73)÷2=110棵。用110-72=38棵就是一班种的棵数,110-75=35棵就是二班种的棵数,110-73=37棵就是三班种的棵数。
练习四
1,百货商店运来三种鞋子,其中37双不是皮鞋,54双不是运动鞋,51双不是布鞋。三种鞋各运来多少双?
2,一个班同学在做作业,班主任问后得知:全班同学都只做完了语文、数学英语作业其中的一种。有23人没有做完数学作业,有19人没有做完语文作业,有16人没有做完英语作业。做完三种作业的各多少人?
3,学校买四种颜色的气球,其中有93个不是红气球,有95个不是黄气球,有98个不是蓝气球,紫气球有10个。学校共买了多少个气球?
【例题5 】 已知13个李子的重量等于2个苹果和1个桃子的重量,而4个李子和1个苹果的重量等于1个桃子的重量。问多少个李子的重量等于1个桃子的重量?
【思路导航】根据题意列出等式:
13李=2苹+1桃 (1)
4李+1苹=1桃 (2)
把(2)式代入(1)式得:13李=2苹+4李+1苹
即9李=3苹,即3李=1苹 (3)
把(3)式代入(2)式得:4李+3李=1桃
即:7李=1桃
练习五
1,3个菠萝的重量等于1个梨和1个西瓜的重量,而1个菠萝和3个梨的重量等于1个西瓜的重量。问多少个梨的重量等于1个西瓜的重量?
2,2个苹果的重量等于3个橘子和3个荔枝的重量,1个苹果和2个荔枝的重量等于3个橘子的重量。问3个橘子的重量等于多少个荔枝的重量?
3,三个好朋友去文具店买东西,一人买了4枝圆珠笔,一个买了2枝钢笔,还有一个买了1枝钢笔1枝圆珠笔和4枝铅笔,三个人用掉的钱相等。那么1枝钢笔的价钱相当于几枝铅笔的价钱?
第12讲盈亏问题
【专题简析】
把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。
盈亏问题的基本解法是:
份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。
解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。
【例题1】 小明的妈妈买回一篮梨,分给全家。如果每人分5个,就多出10个;如果每人分6个,就少2个。小明全家有多少人?这篮梨有多少个?
【思路导航】根据题目中的条件,我们可知:
第一种分法:每人分5个,多10个;
第二种分法:每人分6个,少2个。
这说明全家人数为:10+2=12人,也就是说:
不足的个数+多余的个数=全家的人数
这篮梨的个数是:5×12+10=70个;
练习一
1,幼儿园阿姨把一袋糖分给小朋友们,如果每人分10粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒糖。一共有多少个小朋友?这袋糖有多少粒?
2,有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。树周长是多少米?绳子长多少米?
3,一些同学去划船,如果每条船坐5人,则多出3个位置;如果每条船坐4人,则有3个人没有位置。一共有多少条船?一共有多少个同学?
【例题2】 幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。幼儿园有几个班?这批玩具有多少个?
【思路导航】根据题目中的条件,我们可知:
第一种分法:每班分8个,多2个;
第二种分法:每班分10个,少12个。
从上面的条件中,我们可看出:第二种分法比第一种分法每班多分10-8=2个,所以,所需的玩具总个数从多2个变成了少12个,也就是说在多2个的基础上再加12个,才能保证每班分10个;第二种分法所需的玩具个数比第一种多12+2=14个,那是因为每班多分了2个。根据这一对应关系,即可求出班级的个数为:14÷2=7个,玩具的总个数为8×7+2=58个。
练习二
1,小明带了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元。苹果每千克多少元?小明带了多少钱?
2,一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵。这个小组有几人?一共有多少棵树苗?
3,一组学生去搬书,如果每人搬2本,还剩下12本;如果每人搬3本,还剩下6本。这组学生有几人?这批书有几本?
【例题3】 老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本。优秀少先队员有几人?买来多少本练习本?
【思路导航】根据题目中的条件,我们可知:
第一种分法:每人5本,多了14本;
第二种分法:每人7本,多了2本。
从上面可知第二种分法比第一种分法每人多分了7-5=2本,这样就从原来的多14本变为多2本,两种分配方法的结果相差了14-2=12本,每人多分了2本,多少人会多分了12本呢?根据这一对应关系,可求出优秀少先队员的人数为12÷2=6人,练习本的本数为:5×6+14=44本。
练习三
1,把一袋糖分给小朋友们,如果每人分4粒,则多了12粒;如果每人分6粒,则多了2粒。有小朋友几人?有多少粒糖?
2,妈妈买来一些苹果分给全家人,如果每人分6个,则多了12个;如果每人分7个,则多了6个。全家有几人?妈妈共买回多少个苹果?
3,某学校有一些学生住校,每间宿舍住8人,则空出床位24张;如果每间宿舍住10人,则空出床位2张。学校共有几间宿舍?住宿学生有几人?
【例题4】 学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵。学生有几人?这批树苗有多少棵?
【思路导航】根据题意,我们可知搬树苗的两种方案:
第一种方案:每人搬6棵,差4棵;
第二种方案:每人搬8棵,差18棵。
比较两种方案,每人多搬了8-6=2棵树苗,所需的树苗就从差4棵变为差18棵,结果相差了18-4=14棵,每人多搬了2棵,多少人会多搬了14棵呢?根据这一对应关系,可以求出学生人数为:14÷2=7人,树苗的棵数为:6×7-4=38棵。
练习四
1,自然课上,老师发给学生一些树叶。如果每人分5片叶子,则差3片叶子;如果每人分7片叶子,则差25片树叶。学生有几人?一共有树叶多少片?
2,数学兴趣小组的同学做数学题,如果每人做6道,则少4道;如果每人做8道,则少16道。有几个学生?多少道数学题?
3,学校排练节目,如果每行排8人,则有一行少2人;如果每行排9人,则有一行少7人。一共要排几行?一共有多少人?
【例题5】 三(1)班学生去公园划船,如果每条船坐4人,则少一条船;如果每条船坐6人,则多出4条船。公园里有多少条船?三(1)班有多少学生?
为了帮助理解,我们可以将题目中的条件进行转化。
将条件“如果每条船坐4人,则少一条船”转化为:“如果每条船坐4人,则多出4人”;再将条件“如果每条船坐6人,则多出4条船”转化为:“如果每条船坐6人,则差6×4=24人”。
这样两种分配方法就相差了24+4=28人,这是因为每条船多坐了6-4=2人。根据这一关系,可求出船的条数:28÷2=14条,学生人数:4×(14+1)=60人。
练习五
1,学校给新生分配宿舍,如果每间住8人,则少2间房;如果每间住10人,则多出2间房。共有几间房?新生有多少人?
2,同学们去划船,如果每条船坐5人,则少2条船;如果每船坐7人,则多出2条船。共有几条船?有多少个同学?
2,小明从家到学校,如果每分钟走40米,则要迟到2分钟;如果每分钟走50米,则早到4分钟。小明家到学校有多远?
练一练
1、学校发铅笔给三好学生,每人8支少15支,每人6支少7支,三好学生有多少个?铅笔有多少支?
2、三(1)班同学去公园划船,如果每条船坐4人,则少1条船;如果每条船坐6人,则多出4条船,公园里有多少条船?三(1)班有多少学生?
3、某校给学生分宿舍,如果每间住6人,则有70人没有床位;如果每间住8人,则少一件宿舍,问宿舍有多少间?学生有多少人?
4、李师傅通过查询得知手机还剩下一些话费。他算了算,如果每天花费20元,到月底就欠24元;如果每天花费16元,到月底就欠8元。到月底还有几天?还有多少元话费?
5、王老师从家去学校开会。如果每分钟走60米,就要迟到2分钟;如果每分钟走80米,就可提前1分钟到学校。离开会还有几分钟?王老师家到学校有多少米?
6、少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑。少先队员一共挖多少树坑?
7、体育老师和一个朋友一起上街买足球,他发现自己身边的钱,如果买10个“冠军”牌足球,还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球,结果多了13元。每个足球多少元?体育老师原来身边有多少元?
8、某小学学生乘汽车去春游,如果每辆车坐65人,就会有15人不能乘车;如果每辆车多坐5人,恰好多余了一辆车。一共有多少辆车?有多少个学生?
9、小明7点离开家去看电影,他发现如果每分走60米会吃到5分钟,如果每分走80米会吃到2分钟。求电影几点几分开始上映?小明家离电影院多少米?
10、学生搬一批砖,每人搬4块,其中5人要搬2次;如果每人搬5块,就有两人没有砖可搬。搬砖的学生有多少人?这批转共有多少块?
11、学校给新生安排宿舍,安排5人住一间宿舍要比安排7人住一间多用4间宿舍,住宿的新生有多少人?
12、学校有若干间宿舍,每间住6人比每间住4人相差少3个宿舍,问学校住了多少人?
13、四(1)班同学到科技馆参观,收门票费,每人收5元,则少165元;每人收7元,则少55元。四(1)班一共有多少人?
14、给小朋友发糖果,每人分5块就多54块,每人发7块还多6块,一共有多少块糖果?
15、用一根绳子测量桥的高度,如果绳子两折时,多5米;如果绳子3折时,差4米,求绳子长和桥高分别是多少?
第13讲 和倍问题
【专题简析】
已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做和倍问题。要想顺利地解答和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确列式解答。
解答和倍应用题,关键是要找出两数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。数量关系可以这样表示:
两数和÷(倍数+1)=小数(1倍数)
小数×倍数=大数(几倍数)
两数和-小数=大数
【例题1】 学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?
【思路导航】将二年级所得图书的本数看作1倍数,则三年级所得本数是这样的2倍。如图所示:
由图可知,二、三年级所得图书本数的和360本相当于二年级的(1+2)倍,则二年级所得图书本数的360÷(1+2)=120本,三年级为120×2=240本。
练习一
1,小红和小明共有压岁钱800元,小红的钱数是小明的3倍。小红和小明各有压岁钱多少元?
2,学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。二、三年级各得图书多少本?
3,甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?
【例题2】 小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?
【思路导航】我们把变化后小青的圆珠笔芯枝数看作1倍数,那么小宁与小青圆珠笔芯的枝数和相当于变化后小青枝数的9倍,所以变化后小青的枝数为(30+15)÷(1+8)=5枝,再用15-5=10枝,则表示小青给小宁的枝数。
练习二
1,红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?
2,甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?
3,甲书架有图书18本,乙书架有图书8本,班图书管理员又买来图书16本,怎样分配才能使甲书架图书的本数是乙书架的2倍?
【例题3】 被除数与除数的和为320,商是7,被除数和除数各是多少?
【思路导航】由商是7可知,被除数是除数的7倍,把除数看作1份数,被除数就有这样的7份,一共7+1=8份。
除数:320÷8=40
被除数:40×7=280
练习三
1,被除数和除数和为120,商是7,被除数和除数各是多少?
2,被除数、除数、商的和为79,商是4,被除数、除数各是多少?
3,两个整数相除商是21,余数为1,已知被除数、除数、商、余数的和一共是441。被除数、除数各是多少?
【例题4】 两数相除商为17余6,被除数、除数、商和余数的和是479。被除数和除数分别为多少?
【思路导航】被除数、除数、商和余数的和是479,减去商17和余数6,得到被除数与除数的和为479-17-6=456;又因为被除数比除数的17倍多6,所以456-6=450就相当于除数的(17+1)倍,因此除数为450÷(17+1)=25,被除数为25×17+6=431。
练习四
1,两个整数相除商14余2,被除数、除数、商和余数的和是243,被除数比除数大多少?
2,在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5倍。差是多少?
3,学校买来83本书,其中科技书是故事书的2倍,故事书比文艺书多5本,这三种书各多少本?
【例题5】 两个数之和是792,其中一个数的最后一位数数字是0,如果把0去掉,就与另一个数相同。这两个数分别是多少?
【思路导航】把一个数的最后一位数字0去掉,就与另一个数相同,说明这两个数中大数是小数的10倍。又已知两个数之和是792,那我们就可以求出这两个数分别是多少了。
小数:792÷(10+1)=72
大数:72×10=720
练习五
1,两个数之和是253,其中一个数的最后一位数字是0,如果把0去掉,就与另一个数相同。这两个数分别是多少?
2,师徒两人加工一批零件共693个,师傅加工零件个数的末位数字是0,如果去掉这个0,加工的个数就与徒弟一样多。师徒二人分别加工零件多少个?
3,甲、乙两数的和是209,甲数缩小10倍就和乙数同样大,甲、乙两数分别是多少?
练一练
1.小花和妈妈的年龄加在一起是48岁,妈妈年龄是小红年龄的5倍,小花和妈妈各是多少岁?
2.王大伯家有公鸡、母鸡共303只,其中公鸡是母鸡的2倍,公鸡和母鸡各多少只?
3.小明买大本和小本共25本,其中大本的本数比小本的本数的2倍少2本,大本和小本各是多少?
4.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍多30个。师、徒各生产多少个?
5.两个粮仓共存粮2200千克,由乙仓运出210千克,甲仓存的粮食是乙仓的2倍多10千克,甲仓库和乙仓库原来各存粮食多少千克?
6.甲乙粮仓共存粮2668吨,如果把甲仓存的粮食放到乙仓15吨,两仓库的粮食就一样多了,甲、乙粮仓原来各存粮食多少吨?
7.两个数相除,商4余10,被除数,除数,商,余数的和是274,被除数、除数各是多少?
8.小妹铅笔的支数是小哥的2倍,她从中拿出45支捐给了希望工程,正好是两人支数的总和的一半,小妹原有铅笔多少支?
9.三个饲养场共养2700头牛,第二饲养场养牛的头数是第一饲养场的2倍,第三饲养场养的头数是第二饲养场的3倍,三个饲养场各养牛多少头?
10.某校共有学生560人,其中男生比女生的3倍少40人.则男生、女生各多少人?
