最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

对数计算公式

来源:动视网 责编:小OO 时间:2025-09-30 15:17:53
文档

对数计算公式

性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N(a>0,a≠1)3运算法则①loga(MN)=logaM+logaN;②loga(M/N)=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。定义:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(
推荐度:
导读性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N(a>0,a≠1)3运算法则①loga(MN)=logaM+logaN;②loga(M/N)=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。定义:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(
性质

①loga(1)=0;

②loga(a)=1;

③负数与零无对数.

2对数恒等式

a^logaN=N (a>0 ,a≠1)

3运算法则

①loga(MN)=logaM+logaN;

②loga(M/N)=logaM-logaN; 

             ③对logaM中M的n次方有=nlogaM;

如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数

的底。定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b)

基本性质:

1、a^(log(a)(b))=b

2、log(a)(MN)=log(a)(M)+log(a)(N);

3、log(a)(M÷N)=log(a)(M)-log(a)(N);

4、log(a)(M^n)=nlog(a)(M)

5、log(a^n)M=1/nlog(a)(M)

推导:

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

3、与(2)类似处理 M/N=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指数的性质

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

4、与(2)类似处理

M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n)

换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}

再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]

4换底公式

设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)………………………………①

对①取以a为底的对数,有:log(a)(b)=m……………………………..②

对①取以c为底的对数,有:log(c)(b)=mn……………………………③

③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)

注:log(a)(b)表示以a为底x的对数。

换底公式拓展:

以e为底数和以a为底数的公式代换:

logae=1/(lna) 

5推导公式

log(1/a)(1/b)=loga(b)

loga(b)*logb(a)=1

6求导数

(xlogax)'=logax+lna

其中,logax中的a为底数,x为真数;

(logax)'=1/xlna

特殊的即a=e时有

(logex)'=(lnx)'=1/x

文档

对数计算公式

性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N(a>0,a≠1)3运算法则①loga(MN)=logaM+logaN;②loga(M/N)=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。定义:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top