考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在四边形中,AB∥CD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )
A. B. C. D.
2、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为( )
A. B. C.4.5 D.4.3
3、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )
A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD
C.AD=AE D.AE=CE
4、如图,点E是长方形ABCD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD=10,AB=8,那么AE长为( )
A.5 B.12 C.5 D.13
5、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为( )
A.14 B.25 C.26 D.13
6、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )
A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形
7、如图,将矩形纸片按如图所示的方式折叠,得到菱形,若,则的长为( )
A.2 B. C.4 D.
8、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在处,若,要使,则的度数应为( )
A.20° B.55° C.45° D.60°
9、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
10、如图,已知四边形ABCD和四边形BCEF均为平行四边形,∠D=60°,连接AF,并延长交BE于点P,若AP⊥BE,AB=3,BC=2,AF=1,则BE的长为( )
A.5 B.2 C.2 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.
2、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为 __.
3、如图,矩形ABCD中,AB=9,AD=12,点M在对角线BD上,点N为射线BC上一动点,连接MN,DN,且∠DNM=∠DBC,当DMN是等腰三角形时,线段BN的长为___.
4、如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点C,使得DC=BD,在直线AD左侧有一动点P满足∠PAD=∠PDB,连接PC,则线段CP长的最大值为________.
5、如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若,则CF的长为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.
(1)求证:;
(2)若,,求 BG的长.
2、如图,ABCD是平行四边形,AD=4,AB=5,点A的坐标为(-2,0),求点B、C、D的坐标.
3、如图,在▱ABCD中,对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.
(小海的证明过程)
证明:∵EF是AC的垂直平分线,
∴OA=OC,OE=OF,EF⊥AC,
∴四边形AECF是平行四边形.
又∵EF⊥AC,
∴四边形AECF是菱形.
(老师评析)
小海利用对角线互相平分证明了四边形AECF是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.
(挑错改错)
(1)请你帮小海找出错误的原因;
(2)请你根据小海的思路写出此题正确的证明过程.
4、已知:在中,点、点、点分别是、、的中点,连接、.
(1)如图1,若,求证:四边形为菱形;
(2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.
5、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.
---------参-----------
一、单选题
1、C
【解析】
【分析】
由平行线的性质得,再由,得,证出,即可得出结论.
【详解】
解:一定能判定四边形是平行四边形的是,理由如下:
,
,
,
,
,
又,
四边形是平行四边形,
故选:C.
【点睛】
本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出.
2、A
【解析】
【分析】
根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
【详解】
解:∵四边形ABCD为正方形,
∴∠B=∠DCF=90°,BC=DC,
在△CBE和△DCF中,
,
∴△CBE≌△DCF(SAS),
∴∠BCE=∠CDF,
∵∠BCE+∠DCH=90°,
∴∠CDF+∠DCH=90°,
∴∠DHC=∠DHE=90°,
∵点G为DE的中点,
∴GH=DE,
∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
∴,
∴GH=.
故选A.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
3、D
【解析】
【分析】
根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.
【详解】
解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.
【点睛】
本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.
4、C
【解析】
【分析】
根据矩形的性质,折叠的性质,勾股定理即可得到结论.
【详解】
解:∵四边形ABCD是矩形,
∴,,,
∵将△ADE沿着AE对折,点D恰好折叠到边BC上的F点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
故选:C.
【点睛】
本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.
5、D
【解析】
【分析】
由菱形的性质和勾股定理即可求得AB的长.
【详解】
解:∵四边形ABCD是菱形,AC=10,BD=24,
∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,
在Rt△ABO中,AB==13,
故选:D.
【点睛】
本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键.
6、B
【解析】
【分析】
根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.
【详解】
解:,
,
,
,
∴a=b,c=d,
∵四边形四条边长分别是a,b,c,d,其中a,b为对边,
∴c、d是对边,
∴该四边形是平行四边形,
故选:B.
【点睛】
此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.
7、D
【解析】
【分析】
根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角形的性质求得BC的长.
【详解】
解:∵四边形AECF为菱形,
∴∠FCO=∠ECO,EC=AE,
由折叠的性质可知,∠ECO=∠BCE,
又∠FCO+∠ECO+∠BCE=90°,
∴∠FCO=∠ECO=∠BCE=30°,
在Rt△EBC中,EC=2EB,
又∵EC=AE,AB=AE+EB=6,
∴EB=2,EC=4,
∴Rt△BCE中,,
故选:D.
【点睛】
本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.
8、B
【解析】
【分析】
设直线AF与BD的交点为G,由题意易得,则有,由折叠的性质可知,由平行线的性质可得,然后可得,进而问题可求解.
【详解】
解:设直线AF与BD的交点为G,如图所示:
∵四边形ABCD是矩形,
∴,
∵,
∴,
由折叠的性质可知,
∵,
∴,
∴,
∴;
故选B.
【点睛】
本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键.
9、D
【解析】
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
10、D
【解析】
【分析】
过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.
【详解】
过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,
∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,
∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,
∵DH⊥BC,
∴∠DHC=90º,∴∠ADC+∠CDH=90°,∴∠CDH=30°,
在Rt△DCH中,CH=CD=,DH=,
∴,
∵四边形BCEF是平行四边形,
∴AD=BC=EF,AD∥EF,
∴四边形ADEF是平行四边形,
∴AF∥DE,AF=DE=1,
∵AF⊥BE,
∴DE⊥BE,
∴,
∴,
故选D.
【点睛】
本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.
二、填空题
1、2.5.
【解析】
【分析】
如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可.
【详解】
解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,
∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,
∴,,,
过点B作BC⊥AD于C,
∴∠BCD =90°,
∵四边形ADEF是矩形,
∴∠ADE=∠DEF=90°
∴四边形BCDE是矩形,
∴,,
∴,
∴,
答:则壁虎捕捉蚊子的最短路程是2.5m.
故答案为:2.5.
【点睛】
本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.
2、4.8
【解析】
【分析】
由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.
【详解】
设AC与BD的交点为O,
∵点P是BC边上的一动点,
∴AP⊥BC时,AP有最小值,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,
∴,
∵,
∴,
故答案为:4.8.
【点睛】
本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.
3、15或24或
【解析】
【分析】
分三种情形讨论求解即可.
【详解】
解:①如图1中,
当NM=ND时,
∴∠NDM=∠NMD,
∵∠MND=∠CBD,
∴∠BDN=∠BND,
∴BD=BN==15;
②如图2中,
当DM=DN时,
此时M与B重合,
∴BC=CN=12,
∴BN=24;
③如图3中,
当MN=MD时,
∴∠NDM=∠MND,
∵∠MND=∠CBD,
∴∠NDM=∠MND=∠CBD,
∴BN=DN,
设BN=DN=x,
在Rt△DNC中,∵DN2=CN2+CD2,
∴x2=(12-x)2+92,
∴x=,
综上,当DMN是等腰三角形时,线段BN的长为15或24或.
故答案为:15或24或.
【点睛】
本题考查了矩形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,注意不能漏解.
4、##
【解析】
【分析】
如图,取AD的中点O,连接OP、OC,然后求出OP、OC的长,最后根据三角形的三边关系即可解答.
【详解】
解:如图,取AD的中点O,连接OP、OC
∵∠PAD=∠PDB,∠PDB+∠ADP=90°,
∴∠PAD+∠ADP=90°,即∠APD=90°,
∵AO=OD,
∴PO=OA=AD,
∴
∴OP=,
∵BD=CD=4,OD=,
∴
∵PC≤OP+OC,
∴PC≤,
∴PC的最大值为.
故填:.
【点睛】
本题主要考查了直角三角形斜边中线的性质、勾股定理等知识点,解题的关键在于正确添加常用辅助线,进而求得OP、OC的长.
5、
【解析】
【分析】
设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x的方程,求解x即可.
【详解】
解:设BF=x,则FG=x,CF=4﹣x.
在Rt△ADE中,利用勾股定理可得AE=.
根据折叠的性质可知AG=AB=4,所以GE=2﹣4.
在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,
在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,
所以(2﹣4)2+x2=(4﹣x)2+22,
解得x=﹣2,
∴CF=4-(﹣2),
故答案为:6-2.
【点睛】
本题主要考查了正方形的性质及翻转折叠的性质,勾股定理,拓展一元一次方程,准确运用题目中的条件表示出EF列出方程式解题的关键.
三、解答题
1、(1)见解析;(2)
【分析】
(1)由正方形的性质可得,,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;
(2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长
【详解】
(1)∵BF⊥DE
∴∠BFE=90°
∵四边形ABCD是正方形
∴∠DCE=90°,
∴∠CBG+∠E=∠CDE+∠E,
∴∠CBG=∠CDE
∴△BCG≌△DCE
∴CG=CE
(2)∵,且,,
∴
∵CG=CE
∴,
在中,
【点睛】
本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.
2、、、
【分析】
根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标.
【详解】
解:ABCD是平行四边形,
∴轴,,
由题意可得,,,
∴,即,
∵,,
∴,
∵,,轴,
∴,
∴、、.
【点睛】
此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解.
3、(1)见解析;(2)见解析
【分析】
(1)由垂直平分线的性质可求解;
(2)由“”可证,可得,且,,由菱形的判定可证四边形是菱形.
【详解】
解:(1)是的垂直平分线,
,,
不能得出;
(2)四边形是平行四边形,
.
是的垂直平分线,
,,且,
,且
四边形是平行四边形
.
四边形是菱形.
【点睛】
本题考查了菱形的判定,全等三角形的判定和性质,线段垂直平分线的性质,平行四边形的性质,解题的关键是熟练运用线段垂直平分线的性质.
4、(1)证明见详解;(2)与面积相等的平行四边形有、、、.
【分析】
(1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;
(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.
【详解】
解:(1)∵D、E、F分别是AB、AC、BC的中点,
∴,,,,
∴四边形DECF为平行四边形,
∵,
,
∴四边形DECF为菱形;
(2)∵D、E、F分别是AB、AC、BC的中点,
∴,,,,, ,
且,,,
∴四边形DEFB、DECF、ADFE是平行四边形,
∴,
∵,,
∴四边形EGCF是平行四边形,
∴,
∴,
∴
∴与面积相等的平行四边形有、、、.
【点睛】
题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.
5、见解析
【分析】
根据菱形的性质可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS证明△ADE≌△CDF得到DE=DF,则∠DEF=∠DFE.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,∠A=∠C,
∵BE=BF,
∴AB-BE=BC-BF,即AE=CF,
∴△ADE≌△CDF(SAS),
∴DE=DF,
∴∠DEF=∠DFE.
【点睛】
本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.