Kemperman
410075
E-mail:xschen12000@yahoo.com.cn
510275
E-mail:mcsypz@zsu.edu.cn
G Abelian,A,B⊆G.1960,Kemperman
|A+B|=|A|+|B|−1(A,B).
|A+B|=|A|+|B|+k(k,k≥−1)(A,B), Kemperman.
Abelian;;Kneser
MR(2000)11P70,11B75,20K01
O156.7
An Extension of Kemperman Structure Theorem
Xue Sheng SHEN
Department of Mathematics,Central South University,Changsha410075,P.R.China
E-mail:xschen12000@yahoo.com.cn
Ping Zhi YUAN
Department of Mathematics,Sun Yat-Sen University,Guangzhou510275,P.R.China
E-mail:mcsypz@zsu.edu.cn
Abstract In this paper,we investigate the structure of the those pairs(A,B)offinite
subsets of an Abelian group satisfying|A+B|=|A|+|B|+k(k≥−1),and extend
the Kemperman structure theorem.
Keywords Abelian groups;quasi-periodic decomposition;Kneser theorem
MR(2000)Subject Classification11P70,11B75,20K01
Chinese Library Classification O156.7
1
(G,+,0)Abelian.A,B⊆G,A+B=:{a+b|a∈A,b∈B}.
v c(A,B)c=a+b(a∈A b∈B),v c(A,B)=|{c=a+b|a∈A,b∈B}|.ηb(A,B)v c(A,B)=1c∈A+b,ηb(A,B)=|{c∈A+b|v c(A,B)=1}|.B⊆A,A\\B={a|a∈A.a/∈B},,A A=G\\A.
:2005-05-30;:2005-09-15
:(10471152);(04009801)134049 A⊆G H-(periodic),G H
.,A(aperiodic).φ:G→G/H.α∈(A+H)\\A
A H-(hole).Abelian A,B,|A+B|Cauchy
,|G|,|A+B|≥min{|G|,|A|+|B|−1}([1]).100,
(Cauchy–Davenport)Davenport[2].,Kneser
Abelian[3].
Kneser[3]A,B Abelian G.H=H(A+B)
A+B+H=A+B,|A+B|≥|A+H|+|B+H|−|H|.: |A+B|≤|A|+|B|−1,|A+B|=|A+H|+|B+H|−|H|.
,|A+B|A B|A+B|
,|A+B|≤|A|+|B|−1(A,B)(critical pairs).1960, Kemperman([4] 5.1).[4] 5.1Kemperman (KST).2005,David J.Grynkiewicz[5], KST.
[4,5].
A⊆G,H G,A(quasi-period)H
(quasi-periodic composition)A A=A1∪A0,A1∩A0=∅(A1,A0
),A1H-A0H-.A⊆G
(quasi-periodic),A A1.A=A1∪A0
H,A1A H-(H-periodic part),A0A
(aperiodic part)(A A0).A0,
(reduced).A H A1∪A0 ,A H ≤H A 0⊆A0A 1∪A 0.,
H A=A1∪A0,B=B1∪B0A+B=C
H(C\\(A0+B0))∪(A0+B0).A⊆G(punctured periodic set),A:α∈G\\A,A∪{α}H-.A H
.
Kemperman[4,5].
Kemperman(KST)G Abelian,A,B⊆G, |A+B|=|A|+|B|−1.,A+B,c v c(A,B)=1 A,B H A=A1∪A0
B=B1∪B0,
(i)v c(φ(A),φ(B))=1,c=φ(A0)+φ(B0).
(ii)|φ(A)+φ(B)|=|φ(A)|+|φ(B)|−1,
(iii)(pair)(A0,B0)(|A0+B0|=|A0|+|B0|−1):
(I)|A0|=1|B0|=1;
(II)A0B0d,d|A0|+|B0|−1,
|A0|≥2,|B0|≥2(A0+B0d,v c(A0,B0)=1 c∈A0+B0);
(III)|A0|+|B0|=|H|+1,g0v g0(A0,B0)=1(B0
B0=(g0−A0∩(g1+H))∪{g0−g1},g1∈A0);
(IV)A0,B0B0=g0−A0∩(g1+H),g1∈A0(A0+B0=6:Kemperman1341 (g0+H)\\{g0}),c v c(A0,B0)=1.
1(III)“g0v g
(A0,B0)=1”“g0
(A0,B0)=1”;(IV),“c v c(A0,B0)=1”.Kemperman v g
([4] 5.1.).
:
P1Kneser:|A+B|≤|A|+|B|−1,|A+B|=|A+H|+|B+H|−|H|, :|A+B|≥|A|+|B|,G H|A+B|=|A+H|+|B+H|−|H|?
P2Kemperman(KST)|A+B|=|A|+|B|−1(A+B
,c v c(A,B)=1)(A,B).|A+B|=|A|+|B|+k(k ),(A,B)?
P1,A+B, 1.,P2 (2),Kemperman.3[5] 2.4.
..
1G Abelian.A,B⊆G,A+B=C1∪C0 H,,|H|≥|C0|+2.k:−1≤k≤]−2,|C0|−1},|A+B|=|A|+|B|+k,:
min{[|H|−|C0|
2
(i)|A+B+H|=|A+H|+|B+H|−|H|;
(ii)a0∈A,b0∈B,C0=A∩(a0+H)+B∩(b0+H),|C0|≤|A∩(a0+H)|+ |B∩(b0+H)|+k.
G Abelian,A,B⊆G:|A+B|=|A|+|B|−1.
(i)A+B H-,c0=a0+b0∈A+B,c0+H= A∩(a0+H)+B∩(b0+H),|A∩(a0+H)|+|B∩(b0+H)|=|H|+1.
(ii)A+B=C1∪C0H,,|H|≥|C0|+2, C0=A∩(a0+H)+B∩(b0+H),|A∩(a0+H)|+|B∩(b0+H)|=|C0|+1,a0∈A,b0∈B c=a0+b0∈C0.
2G Abelian,A,B⊆G.A+B H-,
c0v c
(A,B)=1,A+B=C1∪C0H,
.A B H2|H|−(|A∩(a0+H)|+|B∩(b0+H)|)(hole), |(A+H)\\A|+|(B+H)\\B|≤2|H|−(|A∩(a0+H)|+|B∩(b0+H)|), c0=a0+b0∈C0,a0∈A,b0∈B(A+B,C0=c0+H),
k(−1≤k≤|C0|−1)|A+B|=|A|+|B|+k:
(i)A=A1∪A0,B=B1∪B0H;
(ii)v c(φ(A),φ(B))=1,c=φ(A0)+φ(B0),|A+B+H|=|A+H|+|B+H|−|H|;
(iii)C0=A∩(a0+H)+B∩(b0+H),|C0|=|A∩(a0+H)|+|B∩(b0+H)|+k.
3[5] 2.4.3,A+B
Kemperman.
3A,B,C Abelian,A+B=C|A+B|=|A|+|B|−1.
C H-,c0=a0+b0∈C,C=C1∪C0H
(C),|H|≥|C0|+2,Kemperman
H A0+B0=C0.
1342
49
2
1
Kemperman–Scherk
[6]
.
1G Abelian
,A,B ⊆G
,
c ∈A +B ,
v c (A,B )≥|A |+|B |−|A +B |.
2
G Abelian
,A,B ⊆G
.
|A |+|B |>|G |,
A +
B =G (
[3]).
Kneser
Kneser
[3]
.
3n ≥2,G Abelian ,C G ,C =C 1∪C 2∪···∪C n ,
C 1,...,C n C
,|C |+|H (C )|≥min(|C i |+|H (C i )|:i =1,...,n ).
4([4]
[7])G Abelian ,A,B ⊆G
,
|A +B |=|A |+|B |−1
min {|A |,|B |}>1,
(i)A,B
d
,
d
ord(d )≥|A |+|B |+1;
(ii)A +B =(g +H )\\{g },H
G
,g ∈G ;
(iii)A +B
(quasi-periodic).
5G Abelian
,A,B ⊆G ,H G .
A +
B H -,c 0=a 0+b 0,v c 0(A,B )=1;A +B =
C 1∪C 0
H ,.φ:G →G/H ,φA =:A,φa =:a .φC 0=c 0=a 1+b 1=···=a ρ+b ρφC 0ρ(A +B H -,C 0A +B H -c 0+H ).A i =A ∩φ−1a i =A ∩(a i +H )B i =B ∩φ−1b i =B ∩(b i +H ),i =1,...,ρ.A =(A \\(A 1∪···A ρ))B =(B \\(B 1∪···B ρ)),
:
(i)|A +H |=(|φA |−ρ)|H |
|B +H |=(|φB |−ρ)|H |.
(ii)C 0=
ρi =1(A i +B i ),|A 1|+|B 1|≤|C 0|+1|A i |+|B i |≤|H |(i =
2,...,ρ).
(iii)
k
−1≤k ≤|C 0|−1
,
|A +B |=|A |+|B |+k ,
(a)|φ(A +B )|=|φA |+|φB |−ρ,
|A +B +H |=|A +H |+|B +H |−ρ|H |,
(b)|A i |+|B i |≥|C 0|−k (i =1,...,ρ).
(i)
A =A ∪(A 1∪···A ρ),
A +H =(A +H )∪(
ρ
i =1(A i
+H )).
C 0=(A 1+B 1)∪···∪(A ρ+B ρ),C 1=(A +B )\\C 0=(A +B )\\((A 1+B 1)∪···∪(A ρ+B ρ)).
|A +H |=(|φA |−ρ)|H |.
A i +H A +H
H -
,
i =1,...,ρ.
,i 0(1≤i 0≤ρ),
A i 0+H ⊆A +H ,
A i 0+
B i 0+H ⊆A +B i 0+H ⊆A +B +H
⊆(A +B )\\((A 1+B 1)∪···∪(A ρ+B ρ))+H =C 1+H =C 1,
A i 0+
B i 0⊆
C 1=(A +B )\\((A 1+B 1)∪···∪(A ρ+B ρ)).,
|A +H |=
(|φA |−ρ)|H |.B .
(ii)
1
A +B
,
C 0=c 0+H =a 0+b 0+H =(A 1+B 1)∪···∪(A ρ+B ρ).
v c 0(A,B )=1,A i +B i (A 1+B 1),v c 0(A 1,B 1)=1.1,|A 1|+|B 1|≤|C 0|+1.c 0/∈A i +B i (i =2,...,ρ)A i +B i (i =2,...,ρ)C 0
.2|A i |+|B i |≤|H |(i =2,...,ρ).
6
:Kemperman
1343
,|A i |+|B i |>|H |,|A ∩(a i +H )|+|B ∩(b i +H )|>|H |,|(A i −
a i )∩H |+|(B i −
b i )∩H |>|H |.
2,(A i −a i )∩H +(B i −b i )∩H =H ,A ∩(a i +H )+B ∩(b i +H )=a i +b i +H ,A i +B i =a i +b i +H =C 0,.
2A +B =C 1∪C 0
H
,
.
,i (1≤i ≤ρ),|A i |+|B i |≥|C 0|+2.C i =A i +B i ,Kneser
|C i |+|H (C i )|=|A i +B i |+|H (A i +B i )|≥|A i |+|B i |≥|C 0|+2.C 0=C 1∪···∪C ρ,Kneser (3)
|C 0|+|H (C 0)|≥min 1≤i ≤ρ
{|C i |+|H (C i )|}≥|C 0|+2,
|H (C 0)|≥2,C 0
,
.
2
|A i |+|B i |≤|H |(i =1,...,ρ).
(iii)
A i ,
B i ,A
B ,
ρ
i =1
(|A i |+|B i |)=|A |−|A |+|B |−|B |.
(1)
(i)A +H |φA |−ρH -,B +H |φB |−ρH -,C =A +B C 1C 0,C 1|φC |−1H -,|A |≤(|φA |−ρ)|H |,|B |≤(|φB |−ρ)|H ||A |+|B |+k =|A +B |=(|φC |−1)|H |+|C 0|.(1),
ρ
i =1
(|A i |+|B i |)≥(ρ−1)|H |+|C 0|−k +λ|H |,(2)
λ=ρ+|φC |−|φA |−|φB |≥0.(2),(ii)−1≤k ≤|C 0|−1λ=0,|φ(A +B )|=|φA |+|φB |−ρ,|A +B +H |=|A +H |+|B +H |−ρ|H |,
|A i |+|B i |≥
|C 0|−k (i =1,...,ρ).
.3
1
5.
ρ=1.
ρ≥2.5(iii)(2)ρ
i =1
(|A i |+|B i |)≥(ρ−1)|H |+|C 0|−k.
(3)
|A 1|+|B 1|≤|C 0|−k −1,|A i |+|B i |≤|H |(i =2,...,ρ)(3)
.
|C 0|−k ≤|A 1|+|B 1|≤|C 0|+1.
,
−1≤k ≤[|H |−|C 0|
2
]−2ρ
i =2
(|A i |+|B i |)≥(ρ−1)|H |+|C 0|−k −(|A 1|+|B 1|)≥(ρ−1)|H |+|C 0|−k −(|C 0|+1)
≥(ρ−1)|H |−(k +1)≥(ρ−1)|H |− |H |−|C 0|
2
−1
≥(ρ−1)|H |−l,
l =[|H |−|C 0|
2
]−1,i (2≤i ≤ρ),
i =2,
|A 2|+|B 2|≥|H |−l.
C 2=A 2+B 2,
Kneser
|C 2|+|H (C 2)|=|C 2+H (C 2)|+|H (C 2)|≥|A 2|+|B 2|≥|H |−l =|c 0+H |−l.
(4)
1344
49
C 2+H (C 2)=C 2⊂C 0,C 0c 0+H (A +B ),H (C 2)H .(4)
|H (C 2)|≥|c 0+H |−|C 2|−l ≥|H |−|C 0|−l
=|H |−|C 0|−l ≥|H |−|C 0|−
|H |−|C 0|
2+1=|H |−|C 0|+22
>1,(5)H (C 2)H .
|(c 0+H )\\C 2|≤|H (C 2)|+l <2|H (C 2)|(|H (C 2)|≤[|H |−|C 0|2]−1≤|H |−|C 0|−2
2,(5)).:c 0+H,C 2H (C 2),|(c 0+H )\\C 2|≤|H (C 2)|,(c 0+H )\\C 2⊆d +H (C 2)(d ∈c 0+H ),D =:(c 0+H )\\C 0⊆(c 0+H )\\C 2⊆d +H (C 2),
C 0=(c 0+H )\
D =((c 0+H )\\(d +H (C 2)))∪((d +H (C 2))\\D )(H (C 2) B = C 1∪C 0,ρ=1, (i)|A +B +H |=|A +H |+|B +H |−|H |,(ii)a 0∈A,b 0∈B ,C 0=A ∩(a 0+H )+B ∩(b 0+H ),|C 0|≤|A ∩(a 0+H )|+ |B ∩(b 0+H )|+k .1. (i)Kneser : |A +B |=|A +H |+|B +H |−|H |=|(A −a 0)+H |+|(B −b 0)+H |−|H | ≥|(A −a 0)∪H |+|(B −b 0)∪H |−|H | =(|A −a 0|+|H |−|(A −a 0)∩H |)+(|B −b 0|+|H |−|(B −b 0)∩H |)−|H |=|A |+|B |+|H |−(|(A −a 0)∩H |+|(B −b 0)∩H |). |A +B |=|A |+|B |−1,|(A −a 0)∩H |+|(B −b 0)∩H |≥|H |+1>|H |. (6) 2 (A −a 0)∩H +(B −b 0)∩H =H, a 0+ b 0+H =A ∩(a 0+H )+B ∩(b 0+H ), 1v c 0(A,B )=1(c 0=a 0+b 0) |H |=|A ∩(a 0+H )+B ∩(b 0+H )|≥|A ∩(a 0+H )|+|B ∩(b 0+H )|−1. (7) (6),(7) (i). (ii)1,(ii)|C 0|≤|A ∩(a 0+H )|+|B ∩(b 0+H )|−1C 0=A ∩(a 0+H )+B ∩(b 0+H ).C 0 ,Kneser |C 0|≥|A ∩(a 0+H )|+|B ∩(b 0+H )|−1,(ii) .2 φ:G →G/H ,φC 0=c 0=a 1+b 1=···=a ρ+b ρφC 0 ρ .A i =A ∩φ−1a i =A ∩(a i +H ),B i =B ∩φ−1b i =B ∩(b i +H ).,A 0=A 1=A ∩(a 0+H ),B 0=B 1=B ∩(b 0+H ),|A i |+|B i |≤ |H |(i =2,...,ρ)(5(ii)), ρ i =1 (|A i |+|B i |)≥(ρ−1)|H |+|C 0|−k +λ|H |,(8) λ=ρ+|φC |−|φA |−|φB |≥0. k ≤|C 0|−1, (8) λ=ρ+|φC |−|φA |−|φB |=0, |A +B +H |=|A +H |+|B +H |−ρ|H |. (9) (8) ρ i =1 (|A i |+|B i |)≥(ρ−1)|H |+|C 0|−k.(10) 6:Kemperman1345 2. 1A+B H-,c0,v c (A,B)=1, |(A+H)\\A|+|(B+H)\\B|≤2|H|−(|A0|+|B0|),(11) (|A+H|+|B+H|−ρ|H|)−(|A|+|B|)≤(2−ρ)|H|−(|A0|+|B0|).|A+B|=|A|+|B|+k (9), |A0|+|B0|≤(2−ρ)|H|−k.(12)−1≤k≤|C0|−1,C0=c0+H=a0+b0+H,(12)ρ=1|A0|+|B0|≤|H|−k. (10)|A0|+|B0|≥|H|−k,2(ii)(iii). (i).A1=A\\A0,B1=B\\B0.(ii)(iii) |A|+|B|+k=|A+B|=|A+H|+|B+H|−|H| =|(A−a0)+H|+|(B−b0)+H|−|H|≥|(A−a0)∪H|+|(B−b0)∪H|−|H| =(|A−a0|+|H|−|(A−a0)∩H|)+(|B−b0|+|H|−|(B−b0)∩H|)−|H| =|A|+|B|+|H|−(|(A−a0)∩H|+|(B−b0)∩H|) =|A|+|B|+|H|−(|A0|+|B0|)≥|A|+|B|+k, (A−a0)∪H=(A−a0)+H(B−b0)∪H=(B−b0)+H,A+H=A∪(a0+H) B+H=B∪(b0+H),A1=A\\(A∩(a0+H))=(A+H)\\(a0+H)B1=B\\(B∩(b0+H))= (B+H)\\(b0+H)H-,(i) 2A+B=C1∪C0H,.1 |A+B+H|−(|A|+|B|)≤(2−ρ)|H|−(|A0|+|B0|).|A+B+H|=|A+B|+|H|−|C0| |A+B|=|A|+|B|+k, |A0|+|B0|≤(1−ρ)|H|+|C0|−k.(13)−1≤k≤|C0|−1C0,(13)ρ=1|A0|+|B0|≤|C0|−k. (10)|A0|+|B0|=|C0|−k,2(ii)(iii). (i). |A+B+H|=|A+H|+|B+H|−|H| =|(A−a0)+H|+|(B−b0)+H|−|H|≥|(A−a0)∪H|+|(B−b0)∪H|−|H| =(|A−a0|+|H|−|(A−a0)∩H|)+(|B−b0|+|H|−|(B−b0)∩H|)−|H| =|A|+|B|+|H|−(|(A−a0)∩H|+|(B−b0)∩H|) =|A|+|B|+|H|−(|A0|+|B0|). (iii)|A+B+H|=|A+B|+|H|−|C0|=|A|+|B|+k+|H|−|C0|=|A|+|B|+|H|−(|A0|+|B0|), (A−a0)∪H=(A−a0)+H(B−b0)∪H=(B−b0)+H,A+H=A∪(a0+H) B+H=B∪(b0+H),A1=A\\(A∩(a0+H))=(A+H)\\(a0+H)B1=B\\(B∩(b0+H))= (B+H)\\(b0+H)H-,(i). 2.(ii) |A+B|+|H|−|C0|=|A+H|+|B+H|−|H|.(14) (A+B H-,C0H-c0+H).(i)|A+H|=|A1|+|H|,|B+H|= |B1|+|H|.(iii)|C0|=|A0|+|B0|+k.(14)|A+B|=|A|+|B|+k. 2. 2,.1349 (1)G=Z16={0,1,2,...,15}16,H={0,4,8,12}.A+B= {0,1,4,5,8,9,12,13}=(0+H)∪(1+H)H-.A={0,4,5,8,9,12},B= {0,8},|A+B|=|A|+|B|(2,k=0).A0=A∩(1+H)={5,9},B0= B∩(0+H)={0,8}C0=1+H,A B |A+H\\A|+|B+H\\B|≤2|H|−(|A0|+|B0|). A B2. (2)G=Z32={0,1,2,...,31}32,H={0,4,8,12,16,20,24,28}. A+B={0,1,4,8,9,12,16,17,20,21,24,25,28,29}=(0+H)∪{1,9,17,21,25,29} H,. A={0,4,5,8,12,16,17,20,21,24,28},B={4,12},|A+B|=|A|+|B|+1 (2,k=1).A0=A∩(5+H)={5,17,21},B0=B∩(4+H)={4,12} C0={1,9,17,21,25,29},A B |A+H\\A|+|B+H\\B|≤2|H|−(|A0|+|B0|). A B2. 31A+B H-,c=a0+b0∈A+B; (i):a0∈A,b0∈B,c=a0+b0∈C0=a0+b0+H=A∩(a0+H)+B∩(b0+H), |A∩(a0+H)|+|B∩(b0+H)|=|H|+1.(15) Kneser,|A+B|=|A|+|B|−1(15) |(A+H)\\A|+|(B+H)\\B|=|H|−1≤2|H|−(|A∩(a0+H)|+|B∩(b0+H)|). 21Kemperman. 2A+B=C1∪C0H,(C),|H|≥|C0|+2.(ii):a0∈A,b0∈B,c=a0+b0∈C0=A∩(a0+H)+B∩(b0+H)⊂a0+b0+H, |A∩(a0+H)|+|B∩(b0+H)|=|C0|+1.(16) C0,4(A∩(a0+H),B∩(b0+H))(I),(II)(IV). 1(i),|A+B|=|A|+|B|−1(16) |(A+H)\\A|+|(B+H)\\B|=(|A+H|+|B+H|−|H|)+|H|−(|A|+|B|) =|A+B+H|+|H|−(|A+B|+1) ≤2|H|−(|A∩(a0+H)|+|B∩(b0+H)|). 21Kemperman.3. 23[4] 4.5.Kemperman. [1]Cauchy A.L.,Recherches sur les nombres,J.´E cole Polytech.,1813,9:99–116. [2]Davenport H.,On the addition of residue classes,J.London Math.Soc.,1935,10:30–32. [3]Nathanson M.B.,Additive number theory,inverse problems and the geometry of sumsets,graduate texts in mathematices,New York:Springer-Verlag,1996,165. [4]Kemperman J.H.B.,On small sumsets in an Abelian group,Acta Math.,1960,103:63–88. [5]Grynkiewicz D.,Quasi-periodic decompositions and the Kemperman structure theorem,Eueopean J.Combin., 2005,26(5):559–575. [6]Scherk P.,Distinct elements in a set of sums,Amer.Math.Monthly,1955,62:46. [7]Lev V.,On small sumsets in Abelian groups.Structure theory of set addition,Asterisque,1999,xv(258): 317–321.