最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案

来源:动视网 责编:小OO 时间:2025-10-01 02:11:51
文档

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案一、平行四边形1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图
推荐度:
导读2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案一、平行四边形1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图
2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案

一、平行四边形

1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.

(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;

②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.

(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.

(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=1

2

,求BE2+DG2的值.

【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.

【解析】

分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;

②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;

(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;

(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.

详解:(1)①BG⊥DE,BG=DE;

②∵四边形ABCD和四边形CEFG是正方形,

∴BC=DC,CG=CE,∠BCD=∠ECG=90°,

∴∠BCG=∠DCE,∴△BCG≌△DCE,

∴BG=DE,∠CBG=∠CDE,

又∵∠CBG+∠BHC=90°,

∴∠CDE+∠DHG=90°,

∴BG⊥DE.

(2)∵AB=a,BC=b,CE=ka,CG=kb,

∴BC CG b

==,

DC CE a

又∵∠BCG=∠DCE,

∴△BCG∽△DCE,

∴∠CBG=∠CDE,

又∵∠CBG+∠BHC=90°,

∴∠CDE+∠DHG=90°,

∴BG⊥DE.

(3)连接BE、DG.

根据题意,得AB=3,BC=2,CE=1.5,CG=1,

∵BG⊥DE,∠BCD=∠ECG=90°

∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.

点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.

2.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.

(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.

①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.

②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)

【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,

【解析】

试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;

(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得

EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;

②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;

③同②的方法可证.

试题解析:(1)∵AC,BD是正方形的对角线,

∴OA=OC=OB,∠BAD=∠ABC=90°,

∵OE⊥AB,

∴OE=1

2 AB,

∴AB=2OE,

(2)①AF+BF=2OE

证明:如图2,过点B作BH⊥OE于点H ∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN

∴∠BFE=∠OEF=90°

∴四边形EFBH为矩形

∴BF=EH,EF=BH

∵四边形ABCD为正方形

∴OA=OB,∠AOB=90°

∴∠AOE+∠HOB=∠OBH+∠HOB=90°

∴∠AOE=∠OBH

∴△AEO≌△OHB(AAS)

∴AE=OH,OE=BH

∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.

②AF﹣BF=2OE

证明:如图3,延长OE,过点B作BH⊥OE于点H ∴∠EHB=90°

∵OE⊥MN,BF⊥MN

∴∠AEO=∠HEF=∠BFE=90°

∴四边形HBFE为矩形

∴BF=HE,EF=BH

∵四边形ABCD是正方形

∴OA=OB,∠AOB=90°

∴∠AOE+∠BOH=∠OBH+∠BOH

∴∠AOE=∠OBH

∴△AOE≌△OBH(AAS)

∴AE=OH,OE=BH,

∴AF﹣BF

=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE

③BF﹣AF=2OE,

如图4,作OG⊥BF于G,则四边形EFGO是矩形,∴EF=GO,GF=EO,∠GOE=90°,

∴∠AOE+∠AOG=90°.

在正方形ABCD中,OA=OB,∠AOB=90°,

∴∠AOG+∠BOG=90°,

∴∠AOE=∠BOG.

∵OG⊥BF,OE⊥AE,

∴∠AEO=∠BGO=90°.

∴△AOE≌△BOG(AAS),

∴OE=OG,AE=BG,

∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,

∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,

∴BF﹣AF=2OE.

3.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

操作示例

当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.

思考发现

小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.

实践探究

(1)正方形FGCH的面积是;(用含a, b的式子表示)

(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展

小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.

【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;

应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.

详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;

剪拼方法如图2-图4;

联想拓展:能,

剪拼方法如图5(图中BG=DH=b).

点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.

4.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.

探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.

归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;

猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.

【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.

【解析】

试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG

度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设

∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣

30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:

如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,

DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,

∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣

∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,

在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且

∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,

作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,

∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.

考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.

5.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

或23

3

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,

∴∠BOP=90°,

∴OP=33OE=233

, 综上所述:OP 的长为62-或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

6.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

(I )若点P 落在矩形OBCD 的边OB 上,

①如图①,当点E 与点O 重合时,求点F 的坐标;

②如图②,当点E 在OB 上,点F 在DC 上时,EF 与DP 交于点G ,若7OP =,求点F 的坐标:

(Ⅱ)若点P 落在矩形OBCD 的内部,且点E ,F 分别在边OD ,边DC 上,当OP 取最小值时,求点P 的坐标(直接写出结果即可)。

【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫ ⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭

【解析】

【分析】

(I )①根据折叠的性质可得45DOF POF ∴∠=∠=,再由矩形的性质,即可求出F 的坐

标;

②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;

(Ⅱ)当O,P ,F 点共线时OP 的长度最短.

【详解】

解:(I )①∵折痕为EF,点P 为点D 的对应点

DOF POF ∴∆≅∆

45DOF POF ∴∠=∠=

∵四边形OBCD 是矩形,

90ODF ︒∴∠=

45DFO DOF ︒∴∠=∠=

6DF DO ∴==

点F 的坐标为(6,6)

②∵折痕为EF ,点P 为点D 的对应点.

,DG PG EF PD ∴=⊥

∵四边形OBCD 是矩形,

//DC OB ∴,

FDG EPG ∴∠=∠;

DGF PGE ∠=∠

DGF PGE ∴∆≅∆

DF PE ∴=

//DF PE

∴四边形DEPF 是平行四边形.

EF PD ⊥,

DEPF ∴是菱形.

设菱形的边长为x ,则DE EP x ==

7OP =,

7OE x ∴=-,

在Rt ODE ∆中,由勾股定理得222OD QB DE +=

2226(7)x x ∴+-= 解得8514

x = 8514

DF ∴= ∴点F 的坐标为85,614⎛⎫ ⎪⎝⎭

(Ⅱ)

86

,

55 P

⎛⎫ ⎪⎝⎭

【点睛】

此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.

7.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把

△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?

4

65

5

22

【解析】

【分析】

分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作

B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△C B′N中,由勾股定理得,2222

+DN= 3.2 5.6

B N'+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,2222

+DN=22

B N'+;

【详解】

如图1,当∠AB′F=90°时,此时A、B′、E三点共线,

∵∠B=90°,∴2222

AB BE=86

++,

∵B′E=BE=6,∴AB′=4,

∵B′F=BF,AF+BF=AB=8,

在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,

∴AF=5,BF=3,

过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,

∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,

在Rt△CB′N中,由勾股定理得,2222

+DN= 3.2 5.6

B N'+4

65

5

如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,

过点B′作B′N ⊥AD ,则四边形AFB′N 为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt △CB′N 中,由勾股定理得,B′D=2222+DN =22B N '+ =22 ;

综上,可得B′D 的长为

4655

或22. 【点睛】 本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.

8.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.

(1)求图②中y 与x 的函数表达式;

(2)求证:DE DF ⊥;

(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由

【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5455-32.

【解析】

【分析】

(1)利用待定系数法可得y 与x 的函数表达式;

(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;

(3)分三种情况:

①若DE =DG ,则∠DGE =∠DEG ,

②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,

③若DG =EG ,则∠GDE =∠GED ,

分别列方程计算可得结论.

【详解】

(1)设y =kx +b ,

由图象得:当x =1时,y =2,当x =0时,y =4,

代入得:24k b b +=⎧⎨=⎩,得24

k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);

(2)∵BE =x ,BC =2

∴CE =2﹣x , ∴

211,4222CE x CD AF x AD -===-, ∴CE CD AF AD

=, ∵四边形ABCD 是矩形,

∴∠C =∠DAF =90°,

∴△CDE ∽△ADF ,

∴∠ADF =∠CDE ,

∴∠ADF +∠EDG =∠CDE +∠EDG =90°,

∴DE ⊥DF ;

(3)假设存在x 的值,使得△DEG 是等腰三角形,

①若DE =DG ,则∠DGE =∠DEG ,

∵四边形ABCD 是矩形,

∴AD ∥BC ,∠B =90°,

∴∠DGE =∠GEB ,

∴∠DEG =∠BEG ,

在△DEF 和△BEF 中,

FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△DEF ≌△BEF (AAS ),

∴DE =BE =x ,CE =2﹣x ,

∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,

x =54

; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,

∵AD ∥BC ,EH ∥CD ,

∴四边形CDHE 是平行四边形,

∴∠C =90°,

∴四边形CDHE 是矩形,

∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,

∴HG =DH =2﹣x ,

∴AG =2x ﹣2,

∵EH ∥CD ,DC ∥AB ,

∴EH ∥AF ,

∴△EHG ∽△FAG ,

EH HG AF AG =, ∴124222

x x x -=--, ∴12555522x x =

=(舍), ③若DG =EG ,则∠GDE =∠GED ,

∵AD ∥BC ,

∴∠GDE =∠DEC ,

∴∠GED =∠DEC ,

∵∠C =∠EDF =90°,

∴△CDE ∽△DFE ,

∴CE DE CD DF

=, ∵△CDE ∽△ADF , ∴12

DE CD DF AD ==, ∴

12CE CD =,

2,x=

3

2

综上,x=5

4

5-5

2

3

2

【点睛】

本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.

9.(1)(问题发现)

如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为

(2)(拓展研究)

在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;

(3)(问题发现)

当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

【答案】(1)2AF;(2)无变化;(3)AF313.

【解析】

试题分析:(1)先利用等腰直角三角形的性质得出2,再得出BE=AB=2,即可得出结论;

(2)先利用三角函数得出

2

CA

CB

=,同理得出

2

CF

CE

=

△ACF∽△BCE,进而得出结论;

(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出

2,6,即可得出62,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.

试题解析:(1)在Rt△ABC中,AB=AC=2,

根据勾股定理得,22,

点D为BC的中点,∴AD=1

2

2,

∵四边形CDEF是正方形,∴2,

∵BE=AB=2,∴

AF ,

故答案为AF ;

(2)无变化;

如图2,在Rt △ABC 中,AB=AC=2,

∴∠ABC=∠ACB=45°,∴sin ∠ABC=

2CA CB =, 在正方形CDEF 中,∠FEC=

12∠FED=45°,

在Rt △CEF 中,sin ∠FEC=

2CF CE =, ∴CF CA CE CB

=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,

∴△ACF ∽△BCE ,∴

BE CB

AF CA

=∴AF , ∴线段BE 与AF 的数量关系无变化;

(3)当点E 在线段AF 上时,如图2,

由(1)知,

在Rt △BCF 中,,

根据勾股定理得,∴BE=BF ﹣,

由(2)知,∴﹣1,

当点E 在线段BF 的延长线上时,如图3,

在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=CA CB =, 在正方形CDEF 中,∠FEC=

12∠FED=45°,

在Rt △CEF 中,sin ∠FEC=CF CE =,∴CF CA CE CB = , ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE ,∴∠FCA=∠ECB , ∴△ACF ∽△BCE ,∴BE CB

AF CA

=∴AF ,

由(1)知,

在Rt △BCF 中,,

根据勾股定理得,∴

由(2)知,∴+1.

即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF 1+1.

10.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.

(1)求证:四边形ABDF 是菱形.

(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.

【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .

【解析】

【分析】

(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.

【详解】

(1)如图1中,∵∠BCD =∠BDC ,

∴BC =BD ,

∵△ABC 是等边三角形,

∴AB =BC ,

∵AB =AF ,

∴BD =AF ,

∵∠BDC =∠AEC ,

∴BD ∥AF ,

∴四边形ABDF 是平行四边形,

∵AB =AF ,

(2)解:如图2中,∵BA=BC,BD平分∠ABC,

∴BD垂直平分线段AC,

∴DA=DC,

∴△DAC是等腰三角形,

∵AF∥BD,BD⊥AC

∴AF⊥AC,

∴∠EAC=90°,

∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,

∴∠DAE=∠DEA,

∴DA=DE,

∴△DAE是等腰三角形,

∵BC=BD=BA=AF=DF,

∴△BCD,△ABD,△ADF都是等腰三角形,

综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.

【点睛】

本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.

11.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.

(1)求证:△AED≌△CEB′;

(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.

【答案】(1)见解析(2)见解析

【解析】

【分析】

(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;

(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.

【详解】

证明:(1)∵四边形ABCD是平行四边形

∴AD=BC,CD∥AB,∠B=∠D

∵平行四边形ABCD沿其对角线AC折叠

∴BC=B'C,∠B=∠B'

∴∠D=∠B',AD=B'C且∠DEA=∠B'EC

∴△ADE≌△B'EC

(2)四边形AECF是菱形

∵△ADE≌△B'EC

∴AE=CE

∵AE=CE,EF⊥AC

∴EF垂直平分AC,∠AEF=∠CEF

∴AF=CF

∵CD∥AB

∴∠CEF=∠EFA且∠AEF=∠CEF

∴∠AEF=∠EFA

∴AF=AE

∴AF=AE=CE=CF

∴四边形AECF是菱形

【点睛】

本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.

12.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣3

2

)两点,与x轴交于另一

点B.

(1)求经过A,B,C三点的抛物线的解析式;

(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=1

2

x2+x﹣

3

2

;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱

形.证明见解析

【解析】

【分析】

将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;

根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。根据A、C点求得直线AC的解析式,根据B、E点求出直线BE的解析式,联立方程求得的解,即为F点的坐标;

由E、C、F、D的坐标可知DF和EC互相垂直平分,则可判定四边形CDEF为菱形.

【详解】

(1)∵抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣)两点,

∴,解得,

∴抛物线解析式为y=x2+x﹣;

(2)∵y=x2+x﹣,

∴抛物线对称轴为直线x=﹣1,

∵CE∥x轴,

∴C、E关于对称轴对称,

∵C(0,﹣),

∴E(﹣2,﹣),

∵A、B关于对称轴对称,

∴B(1,0),

设直线AC、BE解析式分别为y=kx+b,y=k′x+b′,

则由题意可得,解得,

∴直线AC、BE解析式分别为y=﹣x﹣,y=x﹣,

联立两直线解析式可得,解得,

∴F点坐标为(﹣1,﹣1);

(3)四边形CDEF是菱形.

证明:∵y=x2+x﹣=(x+1)2﹣2,

∴D(﹣1,﹣2),

∵F(﹣1,﹣1),

∴DF⊥x轴,且CE∥x轴,

∴DF⊥CE,

∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),

∴DF和CE互相平分,

∴四边形CDEF是菱形.

【点睛】

本题考查菱形的判定方法,二次函数的性质,以及二次函数与二元一次方程组.

13.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.

求证:AE=AF.

【答案】见解析

【解析】

【分析】

根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,

∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.

【详解】

∵AF⊥AE,

∴∠BAF+∠BAE=90°,

又∵∠DAE+∠BAE=90°,

∴∠BAF=∠DAE,

∵四边形ABCD 是正方形,

∴AB=AD ,∠ABF=∠ADE=90°,

在△ABF 和△ADE 中,

∴△ABF ≌△ADE (ASA ),

∴AF=AE .

【点睛】

本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF ≌△ADE 是解决本题的关键.

14.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =.

(1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数.

(2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.

①若30α=︒,60β=︒,AB 的长为______.

②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.

【答案】(1)120°;(2)55【解析】

试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;

(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;

②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:

解:(1)∵AE=AB,AD=AC,

∵∠EAB=∠DAC=60°,

∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,

在△AEC和△ABD中{AE AB

EAC BAD AC AD

=

∠=∠

=

∴△AEC≌△ABD(SAS),

∴∠AEC=∠ABD,

∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,

∴∠BFC=∠AEB+∠ABE=120°,

故答案为120°;

(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.

由(1)可知△EAC≌△BAD.

∴EC=BD.

∴EC=BD=6,

∵∠BAE=60°,∠ABC=30°,

∴∠EBC=90°.

在RT△EBC中,EC=6,BC=4,

∴22

EC BC

-22

-

∴5

②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,

以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,

∴∠AHC=90°.

∵BE∥AH,

∴∠EBC=90°.

∵∠EBC=90°,BE=2AH,

∴EC2=EB2+BC2=4AH2+BC2.

∵K为BE的中点,BE=2AH,

∴BK=AH.

∵BK∥AH,

∴四边形AKBH为平行四边形.

又∵∠EBC=90°,

∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.

∴AK是BE的垂直平分线.

∴AB=AE.

∵AB=AE,AC=AD,∠ABE=∠ACD,

∴∠EAB=∠DAC,

∴∠EAB+∠EAD=∠DAC+∠EAD,

即∠EAC=∠BAD,

在△EAC与△BAD中

{AB AE

EAC BAD AC AD

=

∠=∠

=

∴△EAC≌△BAD.∴EC=BD=6.

在RT△BCE中,

∴AH=1 2

∴S△ABC=1 2

考点:全等三角形的判定与性质;等腰三角形的性质

15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.

(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.

(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;

②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式

【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)

S=.

【解析】

试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.

试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.

(2)由折叠可知AM=MP,在Rt△MPD中,

∴∴y=-其中,0<x<3.

(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.

∴△PCN为等腰三角形,只可能NC=NP.

过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,

∴解得x=.

(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.

设MP=y,在Rt△ADM中,即∴ y=.∴ S=

考点:函数的性质、勾股定理.

文档

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案

2020-2021中考数学压轴题之平行四边形(中考题型整理,突破提升)附答案一、平行四边形1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top