
图形的相似【答案解析】
1.(2019•淄博)如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.
(1)试证明DM⊥MG,并求的值.
(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.
2.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.
(1)求证:BD2=AD•CD;
(2)若CD=6,AD=8,求MN的长.
3.(2019•荆门)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.
4.(2019•张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE
=AB,连接DE,分别交BC,AC交于点F,G.
(1)求证:BF=CF;
(2)若BC=6,DG=4,求FG的长.
5.(2019•梧州)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.
(1)求DE的长;
(2)求证:∠1=∠DFC.
6.(2019•雅安)如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.
(1)求证:OE=OF;
(2)若AD=4,AB=6,BM=1,求BE的长.
7.(2020•杭州)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).
(1)若AB=2,λ=1,求线段CF的长.
(2)连接EG,若EG⊥AF,
①求证:点G为CD边的中点.
②求λ的值.
8.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.
(1)求证:△BDE∽△EFC.
(2)设,
①若BC=12,求线段BE的长;
②若△EFC的面积是20,求△ABC的面积.
9.(2018•巴中)在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).
(1)画出△ABC;
(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标: ;
(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标: .
10.(2018•东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
11.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
(1)求∠BDF的大小;
(2)求CG的长.
12.(2018•苏州)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.
(1)当AD=3时,= ;
(2)设AD=m,请你用含字母m的代数式表示.
问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.
13.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.
(1)求证:EF=AE﹣BE;
(2)连接BF,如果=.求证:EF=EP.
14.(2018•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
15.(2018•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.
(1)求证:△BDE∽△CAD.
(2)若AB=13,BC=10,求线段DE的长.
16.(2018•济宁)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
(1)猜想DG与CF的数量关系,并证明你的结论;
(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
参
1.(1)证明:如图1中,延长DM交FG的延长线于H.
∵四边形ABDE,四边形BCFG都是正方形,
∴DE∥AC∥GF,
∴∠EDM=∠FHM,
∵∠EMD=∠FMH,EM=FM,
∴△EDM≌△FHM(AAS),
∴DE=FH,DM=MH,
∵DE=2FG,BG=DG,
∴HG=DG,
∵∠DGH=∠BGF=90°,MH=DM,
∴GM⊥DM,DM=MG,
连接EB,BF,设BC=a,则AB=2a,BE=2a,BF=a,
∵∠EBD=∠DBF=45°,
∴∠EBF=90°,
∴EF==a,
∵EM=MF,
∴BM=EF=a,
∵HM=DM,GH=FG,
∴MG=DF=a,
∴==.
(2)解:(1)中的值有变化.
理由:如图2中,连接BE,AD交于点O,连接OG,CG,BF,CG交BF于O′.
∵DO=OA,DG=GB,
∴GO∥AB,OG=AB,
∵GF∥AC,
∴O,G,F共线,
∵FG=AB,
∴OF=AB=DF,
∵GF∥AC,AC∥OF,
∴DE∥OF,
∴OD与EF互相平分,
∵EM=MF,
∴点M在直线AD上,
∵GD=GB=GO=GF,
∴四边形OBFD是矩形,
∴∠OBF=∠ODF=∠BOD=90°,
∵OM=MD,OG=GF,
∴MG=DF,设BC=m,则AB=2m,
易知BE=2OB=2•2m•sinα=4msinα,BF=2BO°=2m•cosα,DF=OB=2m•sinα,
∵BM=EF==,GM=DF=m•sinα,
∴==.
2.证明:(1)∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD
∴
∴BD2=AD•CD
(2)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=AD•CD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2﹣CD2=12
∴MC2=MB2+BC2=28
∴MC=2
∵BM∥CD
∴△MNB∽△CND
∴,且MC=2
∴MN=
3.解:令OE=a,AO=b,CB=x,
则由△GDC∽△EOC得,
即,
整理得:3.2+1.6b=2.1a﹣ax①,
由△FBA∽△EOA得,
即,
整理得:1.6b=2a﹣ax②,
将②代入①得:
3.2+2a﹣ax=2.1a﹣ax,
∴a=32,
即OE=32,
答:楼的高度OE为32米.
4.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△EBF∽△EAD,
∴==,
∴BF=AD=BC,
∴BF=CF;
(2)解:∵四边形ABCD是平行四边形,
∴AD∥CF,
∴△FGC∽△DGA,
∴=,即=,
解得,FG=2.
5.(1)解:∵矩形ABCD中,AD∥CF,
∴∠DAF=∠ACF,
∵AF平分∠DAC,
∴∠DAF=∠CAF,
∴∠FAC=∠AFC,
∴AC=CF,
∵AB=4,BC=3,
∴==5,
∴CF=5,
∵AD∥CF,
∴△ADE∽△FCE,
∴,
设DE=x,则,
解得x=
∴;
(2)∵AD∥FH,AF∥DH,
∴四边形ADFH是平行四边形,
∴AD=FH=3,
∴CH=2,BH=5,
∵AD∥BH,
∴△ADG∽△HBG,
∴,
∴,
∴DG=,
∵DE=,
∴=,
∴EG∥BC,
∴∠1=∠AHC,
又∵DF∥AH,
∴∠AHC=∠DFC,
∠1=∠DFC.
6.(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,BC=AD,
∴∠OAE=∠OCF,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF;
(2)解:过点O作ON∥BC交AB于N,
则△AON∽△ACB,
∵OA=OC,
∴ON=BC=2,BN=AB=3,
∵ON∥BC,
∴△ONE∽△MBE,
∴=,即=,
解得,BE=1.
7.解:(1)∵在正方形ABCD中,AD∥BC,
∴∠DAG=∠F,
又∵AG平分∠DAE,
∴∠DAG=∠EAG,
∴∠EAG=∠F,
∴EA=EF,
∵AB=2,∠B=90°,点E为BC的中点,
∴BE=EC=1,
∴AE==,
∴EF=,
∴CF=EF﹣EC=﹣1;
(2)①证明:∵EA=EF,EG⊥AF,
∴AG=FG,
在△ADG和△FCG中
,
∴△ADG≌△FCG(AAS),
∴DG=CG,
即点G为CD的中点;
②设CD=2a,则CG=a,
由①知,CF=DA=2a,
∵EG⊥AF,∠GCF=90°,
∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,
∴∠EGC=∠F,
∴△EGC∽△GFC,
∴,
∵GC=a,FC=2a,
∴,
∴,
∴EC=a,BE=BC﹣EC=2a﹣a=a,
∴λ=.
8.(1)证明:∵DE∥AC,
∴∠DEB=∠FCE,
∵EF∥AB,
∴∠DBE=∠FEC,
∴△BDE∽△EFC;
(2)解:①∵EF∥AB,
∴==,
∵EC=BC﹣BE=12﹣BE,
∴=,
解得:BE=4;
②∵=,
∴=,
∵EF∥AB,
∴△EFC∽△BAC,
∴=()2=()2=,
∴S△ABC=S△EFC=×20=45.
9.解:(1)△ABC如图所示;
(2)△A1B1C1如图所示;A1(﹣3,3),
(3)△A2B2C2如图所示;A2(6,6).
故答案为(﹣3,3),(6,6).
10.解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴==.
又∵AO=,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,
∴AB=AD=4.
故答案为:75;4.
(2)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴==.
∵BO:OD=1:3,
∴==.
∵AO=3,
∴EO=,
∴AE=4.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=12.
在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,
解得:CD=4.
11.解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
∴∠DAB=90°,AD=AB=10,
∴∠ABD=45°,
∵△EFG是△ABC沿CB方向平移得到,
∴AB∥EF,
∴∠BDF=∠ABD=45°;
(2)由平移的性质得,AE∥CG,AB∥EF,
∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,
∵∠DAB=90°,
∴∠ADE=90°,
∵∠ACB=90°,
∴∠ADE=∠ACB,
∴△ADE∽△ACB,
∴,
∵AC=8,AB=AD=10,
∴AE=12.5,
由平移的性质得,CG=AE=12.5.
12.解:问题1:
(1)∵AB=4,AD=3,
∴BD=4﹣3=1,
∵DE∥BC,
∴,
∴==,
∵DE∥BC,
∴△ADE∽△ABC,
∴==,
∴=,即,
故答案为:;
(2)解法一:∵AB=4,AD=m,
∴BD=4﹣m,
∵DE∥BC,
∴==,
∴==,
∵DE∥BC,
∴△ADE∽△ABC,
∴==,
∴===,
即=;
解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,
∴△ADF∽△ABH,
∴=,
∴===,
即=;
问题2:如图2,
解法一:如图2,分别延长BA、CD交于点O,
∵AD∥BC,
∴△OAD∽△OBC,
∴,
∴OA=AB=4,
∴OB=8,
∵AE=n,
∴OE=4+n,
∵EF∥BC,
由问题1的解法可知:===,
∵==,
∴=,
∴===,即=;
解法二:如图3,连接AC交EF于M,
∵AD∥BC,且AD=BC,
∴=,
∴S△ADC=,
∴S△ADC=S,S△ABC=,
由问题1的结论可知:=,
∵MF∥AD,
∴△CFM∽△CDA,
∴===,
∴S△CFM=×S,
∴S△EFC=S△EMC+S△CFM=+×S=,
∴=.
13.证明:(1)∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∵BE⊥AP,DF⊥AP,
∴∠BEA=∠AFD=90°,
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
在△ABE和△DAF中
,
∴△ABE≌△DAF,
∴BE=AF,
∴EF=AE﹣AF=AE﹣BE;
(2)如图,∵=,
而AF=BE,
∴=,
∴=,
∴Rt△BEF∽Rt△DFA,
∴∠4=∠3,
而∠1=∠3,
∴∠4=∠1,
∵∠5=∠1,
∴∠4=∠5,
即BE平分∠FBP,
而BE⊥EP,
∴EF=EP.
14.解:∵BC∥DE,
∴△ABC∽△ADE,
∴=,
∴=,
∴AB=17(m),
经检验:AB=17是分式方程的解,
答:河宽AB的长为17米.
15.解:(1)∵AB=AC,BD=CD,
∴AD⊥BC,∠B=∠C,
∵DE⊥AB,
∴∠DEB=∠ADC,
∴△BDE∽△CAD.
(2)∵AB=AC,BD=CD,
∴AD⊥BC,
在Rt△ADB中,AD===12,
∵•AD•BD=•AB•DE,
∴DE=.
16.解:(1)结论:CF=2DG.
理由:∵四边形ABCD是正方形,
∴AD=BC=CD=AB,∠ADC=∠C=90°,
∵DE=AE,
∴AD=CD=2DE,
∵EG⊥DF,
∴∠DHG=90°,
∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,
∴∠CDF=∠DEG,
∴△DEG∽△CDF,
∴==,
∴CF=2DG.
(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,
∴EH=2DH=2,
∴HM==2,
∴DM=CN=NK==1,
在Rt△DCK中,DK===2,
∴△PCD的周长的最小值为10+2.
