最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

几何证明模型(二)

来源:动视网 责编:小OO 时间:2025-10-02 00:56:59
文档

几何证明模型(二)

几何基本模型之手拉手模型模型手拉手例题:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE求证:△BAD≌△CAE。模型练习1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF。(1)求证:BE=BF;(2)若∠CAE=30°,求∠ACF度数。2.如图,△ADC与△GDB都为等腰直角三角形,连接AG、CB,相交于点H,问:(1)AG与CB是否相等?(2)AG与CB之间的夹角为多少度?3.如图,直线AB的
推荐度:
导读几何基本模型之手拉手模型模型手拉手例题:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE求证:△BAD≌△CAE。模型练习1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF。(1)求证:BE=BF;(2)若∠CAE=30°,求∠ACF度数。2.如图,△ADC与△GDB都为等腰直角三角形,连接AG、CB,相交于点H,问:(1)AG与CB是否相等?(2)AG与CB之间的夹角为多少度?3.如图,直线AB的
几何基本模型之手拉手模型

模型手拉手

例题:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE求证:△BAD≌△CAE。

模型练习

1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在

   BC上,且AE=CF。

(1)求证:BE=BF;

(2)若∠CAE=30°,求∠ACF度数。

2.如图,△ADC与△GDB都为等腰直角三角形,连接AG、CB,相交于点H,问:(1)AG与CB是否相等?(2)AG与CB之间的夹角为多少度?

3.如图,直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE、CD,二者交点为H。求证:(1)△ABE≌△DBC;(2)AE=DC;

(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB;

(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC。

4.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点

   H.证明:(1)AE=DC;(2)∠AHD=60°;(3)连接HB,HB平分∠AHC。

5.在线段AE同侧作等边△CDE(∠ACE<120°),点P与点M分别是线段BE

和AD的中点。求证:△CPM是等边三角形。

6.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。

7.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D是AB的中点。

(1)如果点P在线段BC上以3cm/s 的速度由点B向点C运动,同时,点Q在线段AC 上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s 后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等.

(2)若点Q以②中的运动速度从点C 出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点Q与点P第一次在△ABC的哪条边上相遇?

8.(1)如图1在等腰△ABC中,AB=AC=5,BC=6,S△ABC =12,PD⊥AB,PE⊥AC,P点为底边的中点,PD+PE=       .

(2)如图2在等腰△ABC中,AB=AC,若P点为底边上任意一点,PD⊥AB,PE⊥AC,你认为PD+PE是定值吗?说明理由.

(3)如图3在等腰△ABC中,AB=AC,若P点为底边上任意一点,PD⊥AB,PE⊥AC,CF⊥AB,你能发现PD,PE和CF存在什么数量关系,提出你的猜想并证明.

(4)如图4,若P点在BC的延长线上,其余条件和(3)相同,那么PD,PE和CF的数量关系又有何变化?写出你的猜想并证明.

9.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).

(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明由;

(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;

(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.

文档

几何证明模型(二)

几何基本模型之手拉手模型模型手拉手例题:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE求证:△BAD≌△CAE。模型练习1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF。(1)求证:BE=BF;(2)若∠CAE=30°,求∠ACF度数。2.如图,△ADC与△GDB都为等腰直角三角形,连接AG、CB,相交于点H,问:(1)AG与CB是否相等?(2)AG与CB之间的夹角为多少度?3.如图,直线AB的
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top