[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题主要有两种解法。
方法一,主要思路为首先求出三种规格成品的最大捆数,然后求出每捆成品不同长度肠衣的搭配方式。
具体做法为:
1,以现有三种规格对应原料长度和根数为约束,分别建立求三种规格成品捆数最大的整数规划模型,利用软件求解。
2,建立组合或优化模型,计算步骤1得到的各种规格成品每捆中不同原料的搭配方式。
3,根据适当规则调整步骤2得到的各种规格成品每捆中不同原料的搭配方式,使最短长度最长的捆数最多。
上述三步骤应完整,模型应清晰,算法应合理实用。
方法二,主要思路为首先计算三种规格成品的所有可能的不同的原料搭配方式,然后用捆数最大作为目标,同时求出成品的最大捆数和每捆成品的捆扎方式。
具体做法为:
1,用组合方法计算每种成品对应的所有可能的原料搭配方式。组合模型要明确并体现原料根数和总长度的约束和允许的误差,算法的合理性和可实现性也是重要的。
2,对各种规格成品建立并求解各种搭配的最优组合使成品捆数最多的整数规划模型。要注意模型中体现原料根数的约束条件的正确性。
在上述两种方法中均应首先考虑原料最长的成品(第三种规格)的捆扎,剩余的材料降级后参与次长的成品的捆扎,再有剩余部分降级参与最短成品的捆扎。