第11章 三角形 同步培优专项习题
1.如图,在三角形ABC中,∠B=60°,∠C=α,点D是AB上一点,E是AC上一点,∠ADE=60°,点F为线段BC上一点,连接EF,过D作DG∥AC交EF于点G,
(1)若α=40°,求∠EDG的度数;
(2)若∠FEC=2∠DEF,∠DGF=∠BFG,求α.
2.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.
3.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.
(1)若∠ABC=30°,∠ACB=60°,求∠DAE的度数;
(2)写出∠DAE与∠C﹣∠B的数量关系 ,并证明你的结论.
4.阅读下面的材料,并解决问题.
(1)已知在△ABC中,∠A=60°,图1﹣3的△ABC的内角平分线或外角平分线交于点O,请直接求出下列角度的度数.
如图1,∠O= ;如图2,∠O= ;如图3,∠O= ;
如图4,∠ABC,∠ACB的三等分线交于点O1,O2,连接O1O2,则∠BO2O1= .
(2)如图5,点O是△ABC两条内角平分线的交点,求证:∠O=90°+∠A.
(3)如图6,△ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1,O2,若∠1=115°,∠2=135°,求∠A的度数.
5.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.
(1)直线AB与直线CD是否平行,说明你的理由;
(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.
①当点G在点F的右侧时,若β=60°,求α的度数;
②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.
6.如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.
(1)若∠BAC=70°,求:∠BOC的度数;
(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)
7.发现:已知△ABC中,AE是△ABC的角平分线,∠B=72°,∠C=36°
(1)如图1,若AD⊥BC于点D,求∠DAE的度数;
(2)如图2,若P为AE上一个动点(P不与A、E重合),且PF⊥BC于点F时,∠EPF= °.
(3)探究:如图2△ABC中,已知∠B,∠C均为一般锐角,∠B>∠C,AE是△ABC的角平
分线,若P为线段AE上一个动点(P不与E重合),且PF⊥BC于点F时,请写出∠EPF与∠B,∠C的关系,并说明理由.
8.如图①,在△ABC中,∠BAC=90°,AD是BC边上的高.
(1)求证:∠DAC=∠ABC;
(2)如图②,△ABC的角平分线CF交AD于点E,求证:∠AFE=∠AEF.
9.问题引入:
(1)如图①所示,△ABC中,点O是∠ABC和∠ACB的平分线的交点,
若∠A=α,则∠BOC= (用α表示):不用说明理由,直接填空.
如图②所示,∠OBC=∠ABC,∠OCB=∠ACB,
若∠A=α,则∠BOC= (用α表示),不用说明理由,直接填空.
(2)如图③所示,∠OBC=∠DBC,∠OCB=∠ECB,若∠A=α,则∠BOC= (用α表示),填空并说明理由.
10.如图,∠CAD与∠CBD的角平分线交于点P.
(1)若∠C=35°,∠D=29°,求∠P的度数;
(2)猜想∠D,∠C,∠P的等量关系.
11.已知在四边形ABCD中,∠A=∠C=90°.
(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明;
(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系,并证明;
(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角,(即∠CDE=∠CDN,∠CBE=∠CBM),求∠E度数.
12.完成下面的证明:
已知:如图,四边形ABCD中,∠A=106°﹣α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F.
求证:∠1=∠2.
证明:∵∠A=106°﹣α,∠ABC=74°+α(已知),
∴∠A+∠ABC=180°.
∴AD∥ ( ).
∴∠1= .
∵BD⊥DC,EF⊥DC(已知),
∴∠BDF=∠EFC=90°( ).
∴BD∥ ( ).
∴∠2= ( ).
∵∠1= (已证),
∴∠1=∠2( ).
13.已知点A在射线CE上,∠BDA=∠C.
(1)如图1,若AC∥BD,求证:AD∥BC;
(2)如图2,若BD⊥BC,请证明∠DAE+2∠C=90°;
(3)如图3,在(2)的条件下,∠BAC=∠BAD,过点D作DF∥BC交射线CE于点F,当∠DFE=8∠DAE时,求∠BAD的度数.(直接写出结果)
14.在△ABC中,∠A=70°,点D、E分别是边AC、AB上的点(不与A、B、C重合),点P是平面内一动点(P与D、B不在同一直线上),设∠PEB=∠1,∠DPE=∠2,∠PDC=∠3.
(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠2= ;(用含有∠1、∠3的代数式表示)
(2)若点P在△ABC的外部,如图(2)所示,则∠1、∠2、∠3之间有何关系?写出你的结论,并说明理由.
(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠1、∠2、∠3之间的关系式.(不需要证明)
15.如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.
(1)CD与EF是否平行,请说明理由.
(2)若DF平分∠ADC,求∠DOC的度数(注:三角形的三个内角和等于180°).
16.如图,在△ABC中,BE是△ABC角平分线,点D是AB上的一点,且满足∠DEB=∠DBE.
(1)DE与BC平行吗?请说明理由;
(2)若∠C=50°,∠A=45°,求∠DEB的度数.
17.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.
(1)若∠ABC=70°,∠ACB=40°,求∠D的度数;
(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.
18.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:
(1)直接写出∠BAC= .
(2)求∠BAH的度数.
19.如图,在四边形ABCD中,∠A与∠C互补,BE、DF分别平分∠ABC、∠ADC,EG∥AB与BC相交于点G.
(1)∠1与∠2有怎样的数量关系?说明理由;
(2)若∠A=108°,∠1=46°,求∠CEG的度数.
20.如图,在四边形ABCD中,∠A=140°,∠D=80°.
(1)如图1,若∠B=∠C,则∠C= 度;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;
(3)①如图3,若∠ABC和∠DCB的角平分线交于点E,试求出∠BEC的度数;
②在①的条件下,若延长BA、CD交于点F(如图4).将原来条件“∠A=140°,∠D=80°”改为“∠F=40°”.其他条件不变.则∠BEC的度数为 .