一、圆柱与圆锥
1.将一根长16分米的圆柱形钢材截成三段较短的圆柱形,其表面积增加了24 平方分米,这根钢材原来的体积是多少?
【答案】解:24÷4=6(平方分米)
16×6=96(立方分米)
答:这根钢材原来的体积是96立方分米。
【解析】【分析】将一根圆柱形钢材截成三段,增加了四个底面积,据此求出圆柱形钢材的底面积,再用底面积乘高即可求出这根钢材的体积。
2.工厂要生产一节烟囱,烟囱长2.5m,横截面是直径为40cm的圆。
(1)做一节烟囱一共需要铁皮多少平方米?(接头处忽略不计)
(2)如果烟囱中充满废气,一节烟囱中最多可以容纳废气多少立方米?
【答案】(1)解:40cm=0.4m
3.14×0.4×2.5=3.14(m2)
答:做一节烟囱一共需要铁皮3.14平方米。
(2)解:3.14×(0.4÷2)2×2.5=0.314(m3)
答:一节烟囱中最多可以容纳废气0.314立方米。
【解析】【分析】1cm=0.01m,(1)做一节烟囱一共需要铁皮的平方米数=这节烟囱横截面的周长×长,其中这节烟囱横截面的周长=横截面的半径×2×π;
(2)一节烟囱中最多可以容纳废气的立方米数=这节烟囱的容积=πr2h。据此代入数据作答即可。
3.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?
【答案】解:3.14×(20÷2)2×40
=314×40
=12560(cm3)
答:每秒流过的水是12560cm3。
【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。
4.计算圆锥的体积。
【答案】解:3.14×2²×15×
=3.14×4×5
=62.8(dm³)
【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。
5.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?
【答案】解:30×2.7× ×1.7÷8≈6(次)
答:至少需要运6次。
【解析】【分析】根据圆锥的体积公式V=×底面积×高求出这个沙堆的体积,然后乘 1.7吨求出沙堆的重量,最后根据沙堆总重量÷每次载重量=运输次数,代入数据即可求出需要运多少次。
6.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?
【答案】解:3.14×6×10+3.14×(6÷2)2
=18.84×10+3.14×9
=188.4+28.26
=216.66(平方分米)
答:做这个水桶大约要用铁皮216.66平方分米。
【解析】【分析】水桶无盖,因此用底面积加上侧面积就是需要铁皮的面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。
7.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?
【答案】解:3.14×3×2+3.14×(3÷2)2
=18.84+3.14×2.25
=18.84+7.065
=25.905(平方米)
答:抹水泥的面积是25.905平方米。
【解析】【分析】抹水泥的面积 =池子的底面积+池子的侧面积=π×半径²+π×直径×高。
8.下图是一个圆柱体“牛肉罐头”的表面展开图。请你算一算,这个圆柱体“牛肉罐头”的容积是多少?(铁皮的厚度忽略不计)【答案】解:25.12÷3.12÷2=4(厘米)
3.14×4²×10
=3.14×160
=502.4(立方厘米)
答:这个圆柱体“牛肉罐头”的容积是502.4立方厘米。
【解析】【分析】圆柱的底面周长是25.12厘米,用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高求出容积。
9.一个圆柱体的蓄水池,从里面量底面周长31.4米,深2米,在它的内壁与底面抹上水泥。
(1)抹水泥的面积是多少平方米?
(2)蓄水池能蓄多少吨水?(每立方米水约重1.1吨)
【答案】(1)31.4×2=62.8(平方米),
31.4÷2÷3.14
=15.7÷3.14
=5(米)
3.14×52+62.8
=3.14×25+62.8
=78.5+62.8
=141.3(平方米)
答:抹水泥的面积是141.3平方米。
(2)3.14×52×2×1.1
=3.14×25×2×1.1
=78.5×2×1.1
=157×1.1
=172.7(吨)
答:蓄水池能蓄水172.7吨。
【解析】【分析】(1)已知圆柱的底面周长,用底面周长÷2÷3.14=底面半径,然后用圆柱的侧面积+底面积=抹水泥的面积,据此列式解答;(2)要求蓄水池能蓄水多少吨,先求出圆柱的体积,然后乘每立方米水的质量即可得到,据此列式解答。
10.一个圆锥形小麦堆,底面半径是2米,高是1.5米。如果每立方米小麦重0.75吨,那么这堆小麦一共重多少吨?
【答案】解:×3.14×22×1.5×0.75
=×3.14×4×1.5×0.75
=3.14×4×0.5×0.75
=12.56×0.5×0.75
=6.28×0.75
=4.71(吨)
答:这堆小麦一共重4.71吨.
【解析】【分析】根据题意可知,先求出圆锥形麦堆的体积,用公式:V= πr2h,然后用体积×每立方米小麦的质量=这堆小麦的总质量,据此列式解答
11.用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长10厘米.
(1)扎这个盒子至少用去塑料绳多少厘米?
(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?
【答案】(1)解:20×4+40×4+10
=80+160+10
=250(厘米)
答:扎这个盒子至少用去塑料绳250厘米。
(2)解:面积:3.14×40×20
=125.6×20
=2512(平方厘米)
答:在它的整个侧面贴上商标和说明,这部分的面积是2512平方厘米。
【解析】【分析】(1)扎这个盒子至少用去塑料绳的长度=蛋糕的直径×4+蛋糕的高×4+打结处的长度;
(2)侧面贴上商标和说明这部分的面积=蛋糕的侧面积=蛋糕的底面周长×蛋糕的高,其中蛋糕的底面周长=蛋糕的底面直径×π。
12.
(1)请在下图中画出三角形ABC,已知其三个顶点的位置分别是:A(4,3),B(-2,0),C(4,0)。
(2)如果每个小方格的边长为1 cm,那么三角形ABC绕BC边旋转一周所得的立体图形的体积是多少?
【答案】(1)解:如图:
(2)解:立体图形为圆锥,BC=2+4=6 cm AC=3 cm
答:所得的立体图形的体积是56.52立方厘米.
【解析】【分析】(1)数对中第一个数表示列,第二个数表示行,根据所在的列与行确定各点的位置后画出图形;(2)这个三角形是直角三角形,沿着一条直角边旋转一周后得到一个圆锥,圆锥的高是BC的长,底面半径是AC的长,根据圆锥的体积公式计算体积即可.
13.
(1)计算下面立体图形的表面积
(2)计算下面立体图形的体积
【答案】(1)244.92dm2
(2)56.52m3【解析】【解答】解:(1)先计算出圆柱的半径:18.84÷3.14÷2=3dm;再计算圆柱的两个底面积:3×3×3.14×2=56.52dm2;接着计算圆柱的侧面积:18.84×10=188.4dm2;最后圆柱的表面积为:56.52+188.4=244.92dm2;(2)先计算出圆锥的半径:6÷2=3m;再计算圆锥的
体积为:×3×3×3.14×6=56.52m3。
故答案为:(1)244.92dm2;(2)56.52m3。
【分析】圆柱的表面积=底面积×2+侧面积;圆锥的体积=×底面积×高。
14.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可搭配选择.
(1)你选择的材料是________号和________号.
(2)你选择的材料制成水桶的容积是________升.
【答案】(1)②;③
(2)62.8
【解析】【解答】解:(1)材料②的周长3.14×4=12.56(分米),
材料④的周长3.14×3=9.42(分米),
所以要选材料②、③;
故答案为:②,③;
2)制作成水桶的底面直径是4分米,高是5分米;
水桶的容积:
3.14×(4÷2)2×5,
=3.14×22×5,
=3.14×4×5,
=62.8(立方分米),
62.8立方分米=62.8升,
答:水桶的容积为62.8升.
【分析】(1)制作圆柱形水桶,说明要选一个长方形和一个圆形铁皮,而且所选的长方形的一条边和圆的周长相等即可达到要求,关键算出圆的周长;(2)由上面提供的数据直接运用圆柱的体积计算公式列式解决问题.此题主要考查圆柱的展开图以及利用圆柱的体积计算公式解答问题.
15.解答.
(1)三角形顶点A用数对表示是________.
(2)如果AC=4厘米,BC=3厘米,AB=5厘米,把三角形绕C点顺时针每次旋转90°,转动一圈后,A点走过的图形是________形,它的面积是________平方厘米.
(3)将三角形按3:1放大,画出放大后的图形.
(4)把这个图形绕AC轴旋转一圈形成的物体是________形,体积是________立方厘米.
【答案】(1)(10,5)
(2)圆
;50.24
(3)解:如图,(4)圆锥体
;37.68
【解析】【解答】解:(1)因为,A点在图中丛列上对应的数是10,横行对应的数是5,所以,A点用数对表示(10,5);
(2)A点走过的图形是以C为圆心,以4厘米为半径的圆形;
所以,该图形的面积是:3.14×4×4=50.24(平方厘米);
(4)因为形成的图形是以底面半径为3厘米,高为4厘米的圆锥体,
所以,该图形的体积是: ×3.14×32×4,
=9.42×4,
=37.68(立方厘米);
故答案为:(10,5);圆,50.24;圆锥体,37.68.
【分析】(1)看A点在图中丛列上对应的数就是数对中的第一个数;横行对应的数就是数对中的第二个数;(2)根据题意知道A点走过的图形是以C为圆心,以4厘米为半径的圆形;利用圆的面积公式,S=πr2代入数据解决问题;(3)将三角形ABC的AC边和BC 边分别扩大3倍,在图中画出即可;(4)把这个三角形绕AC轴旋转一圈形成的图形是以
底面半径为3厘米,高为4厘米的圆锥体,根据圆锥的体积公式V= sh= πr2h,代入数据解决问题.根据各个问题的不同,利用相应的公式解决问题.