最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2011年高考一轮课时训练(理)9.2两直线的位置关系、交点、距离 (通用版)

来源:动视网 责编:小OO 时间:2025-10-02 01:03:23
文档

2011年高考一轮课时训练(理)9.2两直线的位置关系、交点、距离 (通用版)

第二节两直线的位置关系、交点、距离题号12345答案一、选择题1.(2009年上海卷)已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3B.1或5C.3或5D.1或22.直线l1:ax+by+c=0,l2:mx+ny+p=0,则=-1是l1⊥l2的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是()A.-2B.-1
推荐度:
导读第二节两直线的位置关系、交点、距离题号12345答案一、选择题1.(2009年上海卷)已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3B.1或5C.3或5D.1或22.直线l1:ax+by+c=0,l2:mx+ny+p=0,则=-1是l1⊥l2的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是()A.-2B.-1
第二节 两直线的位置关系、交点、距离

题号12345
答案
一、选择题

1.(2009年上海卷)已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0平行,则k的值是(  )

A.1或3        B.1或5

C.3或5                D.1或2

2.直线l1:ax+by+c=0,l2:mx+ny+p=0,则=-1是l1⊥l2的(  )

A.充分而不必要条件     B.必要而不充分条件

C.充要条件             D.既不充分又不必要条件

3.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(  )

A.-2                  B.-1

C.0                    D.1

4.(2010年潍坊模拟)两平行直线l1,l2分别过点P(-1,3),Q(2,-1),它们分别绕旋转P,Q,但始终保持平行,则l1,l2之间的距离的取值范围是(  )

A.(0,+∞)            B.[0,5]

C.(0,5]                 D.[0,]

5.已知直线x+3y-7=0,kx-y-2=0和x轴、y轴围成四边形有外接圆,则实数k等于(  )

A.-3                 B.3

C.-6                 D.6

二、填空题

6.两平行直线l1:3x+4y+5=0,l2:6x+my+n=0间的距离为3,则m+n=________.

7.(2010年长郡中学月考)过点C(6,-8)作圆x2+y2=25的切线,切点为A、B,那么点C到直线AB的距离为________.

8.(2010年重庆卷)直线l与圆x2+y2+2x-4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为________.

三、解答题

9. 对任意的实数λ,直线(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2)的距离为d,求d的取值范围.

10.已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0,求一点P使|PA|=|PB|,且点P到l的距离等于2.

1.解析:当k=3时,两直线平行,当k≠3时,由两直线平行,斜率相等,得:=k-3,解得:k=5,故选C.

答案:C

2.解析:由=-1,可得l1⊥l2,∴选A.

答案:A

3.解析:解方程组得交点坐标为(4,-2),代入ax+2y+8=0,得a=-1.

答案:B

4.C

5.解析:如右图所示

,设围成四边形为OABC,因OABC有外接圆,且∠AOC=90°,

故∠ABC=90°.

∴两条直线x+3y-7=0,kx-y-2=0互相垂直,·k=-1,即k=3,故选B.

答案:B

6.解析:由l1∥l2⇒m=8,∴l2:3x+4y+=0.

再由l1、l2间的距离为3得=3⇒n=40或-20.

∴m+n=48或-12.

答案:48或-12

7.解析:设切点A、B的坐标分别为A(x1,y1),B(x2,y2),则切线AC、BC的方程分别为AC:x1x+y1y=25,BC:x2x+y2y=25.又点C(6,-8)同时在切线AC、BC上,

∴6x1-8y1=25,6x2-8y2=25.

这说明切点A(x1,y1),B(x2,y2)同时在直线6x-8y=25上.故直线AB的方程为:6x-8y-25=0.

点C到直线AB的距离d==.

答案:

8.解析:设圆心O(-1,2),直线l的斜率为k, 弦AB的中点为P,PO的斜率为kOP,kOP=则l⊥PO,所以k·kOP=k·(-1)=-1,∴k=1 由点斜式得y=x-1.

答案:y=x-1

9.解析:将原方程化为(2x-y-6)+λ(x-y-4)=0,它表示的是过两直线2x-y-6=0和x-y-4=0交点的直线系方程,但其中不包括直线x-y-4=0.因为没有λ的值使其在直线系中存在.解方程组得所以交点坐标为(2,-2).当所求直线过点P和交点时,d取最小值为0;当所求直线与过点P和交点的直线垂直时,d取最大值,此时有d==4.

但是此时所求直线方程为x-y-4=0.而这条直线在直线系中不存在,所以d的取值范围是.

10.解析:为使|PA|=|PB|,点P必定在线段AB的垂直平分线上,又点P到直线l的距离为2,所以点P又在距离l为2的平行于l的直线上,求这两条直线的交点即得点P.

设点P的坐标为P(a,b),∵A(4,-3),B(2,-1),

∴AB中点M的坐标为(3,-2),

而AB的斜率kAB==-1,

∴AB的垂直平分线方程为y+2=x-3即x-y-5=0

而点P(a,b)在直线x-y-5=0上,故a-b-5=0①

又已知点P到l的距离为2

得=2②

解①,②组成的方程组

得或∴P(1,-4)和P为所求的点.

文档

2011年高考一轮课时训练(理)9.2两直线的位置关系、交点、距离 (通用版)

第二节两直线的位置关系、交点、距离题号12345答案一、选择题1.(2009年上海卷)已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3B.1或5C.3或5D.1或22.直线l1:ax+by+c=0,l2:mx+ny+p=0,则=-1是l1⊥l2的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是()A.-2B.-1
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top