
C
A
B
D
O 图2
A
B
C
D
E
........................优质文档..........................
静安区2019学年第二学期期中教学质量调研
九年级数学试卷2020.5
(满分150分,100分钟完成)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)
[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列二次根式中,是最简二次根式的为
(A)a 3;
(B)3a ;
(C)a 27;
(D)
3
a
.2.一天有800秒,将这个数用科学记数法表示为
(A)2108⨯;(B)3104.86⨯;(C)410.8⨯;(D)5108.0⨯.3.如果关于x 的方程022=++m x x 有实数根,那么m 的取值范围是
(A)1 (C)1>m ; (D)1≥m . 4.体育课上,甲同学练习双手头上前掷实心球,测得他5次投掷的成绩为:8,8.5,9.2,8.5,8.8(单位:米), 那么这组数据的平均数、中位数分别是(A)8.5,8.6;(B)8.5,8.5; (C)8.6,9.2; (D)8.6,8.5. 5.如图1,□ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断□ABCD 是菱形的为 (A)AO =CO ;(B)AO =BO ;(C)∠AOB =∠BOC ; (D)∠BAD =∠ABC . 6.如图2,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B 、C 分别与点D 、E 对应,如果B 、D 、C 三点恰好在同一直线上,那么下列结论错误的是(A)∠ACB =∠AED ;(B)∠BAD =∠CAE ;(C)∠ADE =∠ACE ; (D)∠DAC =∠CDE . 二、填空题:(本大题共12题,每题4分,满分48分) [在答题纸相应题号后的空格内直接填写答案]7.计算:=÷711a a ▲.8.因式分解:= -92x ▲ . 120 100 人数图3 时间(小时) 0.501 1.5220 9.不等式组⎩ ⎨ ⎧<->+01, 23x x x 的解集是 ▲.10.方程024=+⋅-x x 的根为▲ . 11.如果反比例函数x k y = (k 是常数,0≠k )的图像经过点(-5,-1),那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而▲ (填“增大”或“减小”). 12.在四张完全相同的卡片上,分别画有:正三角形、正八边形、圆和矩形.如果从中任意抽取1张卡片,那么这 张卡片上所画图形既是轴对称图形又是中心对称图形的概率是 ▲ . 13.为了解某区24000名初中生平均每天的体锻时间,随机调查了该 区300名初中生.图3是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为 ▲ 人. 14.运输两批救援物资:第一批220吨,用4节火车皮和5辆货车正 好装完;第二批158吨,用3节火车皮和2辆货车正好装完.如果每节火车皮的运载量相同,每辆货车的运载量相同,那么一节火车皮和一辆货车共装救援物资 ▲ 吨. 15.如图4,在△ABC 中,点D 在边AB 上,AB =4AD ,设a AB =, b AC =,那么向量DC 用向量a 、b 表示为 ▲. 16.如图5,已知AB 是⊙O 的直径,弦CD 交AB 于点E ,∠CEA =30°, OF ⊥CD ,垂足为点F ,DE =5,OF =1,那么CD =▲. 17.已知矩形ABCD ,对角线AC 与BD 相交于点O ,AB =6,BC =8,分别 以点O 、D 为圆心画圆,如果⊙O 与直线AD 相交、与直线CD 相离,且⊙D 与⊙O 内切,那么⊙D 的半径长r 的取值范围是 ▲ . 18.如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周 长线”.在直角梯形ABCD 中,AB //CD ,∠A =90°,DC =AD ,∠B 是锐角,12 5 cot =B ,AB =17.如果点E 在梯形的边上,CE 是梯形ABCD 的“等分周长线”,那么△BCE 的周长为 ▲ . 三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分) 计算: 21 22 81 21 )21(12-+++--)(.20.(本题满分10分) A D 图5 B C O F E 图4 A B C D 图7 0.8 x (吨) 10 O y (万元) 20.3 图8 E D C A B G F H 解方程: 11 2112=-++x x .21.(本题满分10分,每小题满分5分) 已知:如图6,在Rt△ABC 中,∠ACB =90°,BC =12,3 2 cos =B ,D 、E 分别是AB 、BC 边上的中点,AE 与CD 相交于点G .(1)求CG 的长;(2)求tan∠BAE 的值. 22.(本题满分10分,每小题满分5分) 疫情期间,甲厂欲购买某种无纺布生产口罩,A 、B 两家无纺布公司各自给出了该种无纺布的销售方案.A 公司方案:无纺布的价格y (万元)与其重量x (吨)是如图7所示的函数关系; B 公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求图7所示的y 与x 的函数解析式;(不要求写出定义域) (2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少. 23.(本题满分12分,每小题满分6分) 已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H . (1)求证:BG =GF ; (2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2 . E 图6 C B A D G 图9 1 1O x y G 图10 A B D C E F 24.(本题满分12分,第(1)小题满分4分,第(2)①小题满分4分,第(2)②小题满分4分) 在平面直角坐标系xOy 中(如图9),已知抛物线c bx x y ++-=2 2 1(其中b 、c 是常数)经过点A (-2,-2)与点B (0,4),顶点为M . (1)求该抛物线的表达式与点M 的坐标; (2)平移这条抛物线,得到的新抛物线与y 轴交于点C (点C 在点B 的下方),且△BCM 的面积为3.新抛物线的对称轴l 经过点A ,直线l 与x 轴交于点D . ①求点A 随抛物线平移后的对应点坐标; ②点E 、G 在新抛物线上,且关于直线l 对称,如果正方形DEFG 的顶点F 在第二象限内,求点F 的坐标. 25.(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分) 在Rt△ABC 中,∠ACB=90°,AC =15,5 4 sin = ∠BAC .点D 在边AB 上(不与点A 、B 重合),以AD 为半径的⊙A 与射线AC 相交于点E ,射线DE 与射线BC 相交于点F ,射线AF 与⊙A 交于点G . (1)如图10,设AD =x ,用x 的代数式表示DE 的长;(2)如果点E 是 的中点,求∠DFA 的余切值; (3)如果△AFD 为直角三角形,求DE 的长. 静安区质量调研九年级数学试卷参及评分标准2020.5 一、选择题:(本大题共6题,每题4分,满分24分) 1.A; 2.C ; 3.B; 4.D ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.4a ;8.)3)(3(+-x x ;9.11<<-x ; 10.x =4;11.减小;12.3 4;13.4800;14.54;15.b a +-4 1 ; 16.10-17.98< 三、(本大题共7题,第19~22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=22)12(4223--++-)(·················································(8分) =236-.············································································(2分) 20.解:1212-=+-x x ············································································(4分) 022=--x x ···············································································(2分) 解得11-=x ,22=x ········································································(2分) 经检验:11-=x 是增根,舍去;22=x 是原方程的根.························(1分)∴原方程的根是2=x .·····································································(1分) 21.解:(1)在Rt△ABC 中,12 182 cos 3 BC AB B = ==.········································(1分)∵D 是边上的中点,∴1 92 CD AB ==.················································(1分) 又∵点E 是BC 边上的中点,∴点G 是△ABC 的重心.····························(1分) ∴22 963 3 CG CD == ⨯=.·································································(2分)(2)∵点E 是BC 边上的中点,∴1 62 CE BE BC ===.···································(1分) 过点E 作EF ⊥AB ,垂足为F . 在Rt△BEF 中,BF =BE ·cos B =2 3 ⨯ =,···········································(1分) ∴EF ===··············································(1分) AF =AB -BF =18-4=14.·········································································(1分) ∴tan∠BAE = EF AF =··························································(1分)22.解:(1)设一次函数的解析式为y=kx+b (k 、b 为常数,k ≠0).····················(1分) 由一次函数的图像可知,其经过点(0,0.8)、(10,20.3),代入得 ⎩ ⎨ ⎧=+=+.3.20108.00b k b , ···············································································(2分)解得⎩⎨ ⎧==. 8.095.1b k , ·················································································(1分) ∴这个一次函数的解析式为y=1.95x+0.8.···········································(1分) (2)如果在A 公司购买,所需的费用为:y=1.95×40+0.8=78.8万元;··············(2分) 如果在B 公司购买,所需的费用为:2×30+1.9×(40-30)=79万元;········(2分)∵78.8<79, ∴在A 公司购买费用较少.·······································(1分) 23.证明:(1)∵四边形ABCD 是平行四边形, ∴AB =CD ,AB //CD .·········································································(1分)∵AB =AE ,∴AE =CD .·········································································(1分)∴四边形ACDE 是平行四边形.·····························································(1分)∴AC//DE .·······················································································(1分)∴ 1==AE AB GF BG .··············································································(1分)∴BG =GF .························································································(1分)(2)∵AB =AE ,∴BE =2AE .∵AC =2AB ,∴BE =AC . ∵四边形ACDE 是平行四边形,∴AC=DE . ∴DE=BE .························································································(1分)∵点F 是DE 的中点,∴DE=2EF . ∴AE=EF .·······················································································(1分)∵∠E =∠E ,∴△BEF ≌△DEA .·····························································(1分)∴∠EBF =∠EDA .···············································································(1分)∵AC //DE ,∴∠GAH =∠EDA . ∴∠EBF =∠GAH . ∵∠AHG=∠BHA ,∴△AHG ∽△BHA .·······················································(1分)∴AH GH BH AH =.∴BH GH AH ⋅=2.·········································································(1分) 24.解:(1)将A (-2,-2)、B (0,4)代入c bx x y ++-=22 1得,21(2)22200 4.b c c ⎧-⨯--+=-⎪⎨⎪++=⎩ ,····························································(2分)解得⎩⎨⎧==. 42c b ,∴该抛物线的表达式为:4221 2++-=x x y ;········································(1分) 顶点M 的坐标是:(2,6).··································································(1分) (2)①∵平移后抛物线的对称轴经过点A (-2,-2),∴可设平移后的抛物线表达式为:k x y ++-=2)221(.·····························(1分)∴C (0,-2+k ).∴32)]2(4[2 1221=⋅+--=⋅=∆k BC S BCM ,···········································(1分)解得k=3.∴3)22 12++-=x y (.······················································(1分)即原抛物线向左平移4个单位,向下平移3个单位可以得到新的抛物线. ∴点A 对应点的坐标为(-6,-5).························································(1分)②设EG 与DF 的交点为H .在正方形DEFG 中,EG ⊥DF ,EG =DF =2EH =2DH . ∵点E 、G 是这条抛物线上的一对对称点,∴EG //x 轴. ∴DF ⊥x 轴,由此可设F (-2,2a ). ∵点F 在第二象限内,∴a >0.∴EG =DF =2EH =2DH =2a . 不妨设点E 在点G 的右侧,那么E (-2+a ,a ).·······································(1分)将点E 代入3)221 2++-=x y (得:a a =+-32 12.···································(1分)解得171-=a ,172--=a (不合题意,舍去).·······························(1分)∴F (-2,272-).··········································································(1分) 25.解:(1)过点D 作DH ⊥AC ,垂足为H .·····················································(1分) 在Rt△AEH 中,4sin 5 DH AD BAC x =⋅∠=,··········································(1分) x DH AD AH 5 322= -=.·································································(1分)在⊙A 中,AE =AD=x ,∴x x x AD AE EH 5253=-=-=·······························(1分) ∴5 DE x ==.···························································(1分)(2)∵4sin =5 BC BAC AB ∠=,∴可设BC =4k (k >0),AB =5k ,则AC k .∵AC =15,∴3k =15,∴k =5.∴BC =20,AB =25. ∵点E 是 DG 的中点,由题意可知此时点E 在边AC 上,点F 在BC 的延长线上,∴∠FAC =∠BAC . ∵∠FCA =∠BCA=90°,AC =AC ,∴△FCA ≌△BCA .∴FC =BC =20.················(1分)∵45tan 225 x DH AED EH x ∠===,又∵∠AED=∠FEC ,且∠AED 、∠FEC 都为锐角,∴tan∠FEC =2.∴2010tan 2 FC EC FEC ===∠.∴AE =AC -EC =20-10=5.·········(1分)过点A 作AM ⊥DE ,垂足为M ,则11522EM ED = ==∵4255sin 5255 x DH AED ED ∠== ,∴sin 5AM AE AED =⋅∠==.(1分)在Rt△EFC 中,EF =. ∴在Rt△AFM 中,11cot 2FM FE EM AFD AM AM +∠====.···········(1分)(3)当点E 在AC 上时,只有可能∠FAD=90°. ∵FC =CE ·tan∠FEC =2(15-x ) ,∴)EF x =-. ∴25351555 FD EF ED x x x =+=-+=-).∵5cos 5 EH AED DH ∠==,又∵∠AED=∠ADE ,且∠AED 、∠ADE 都为锐角, ∴cos cos ADE AED ∠=∠= ∴cos5 AD ADE DF ∠===.·················································(1分)∴AD=x= 75 8 .∴ 75 5584 DE x ==⨯=.·········································(1分)当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF. ∵∠AFC、∠AEF都为锐角,∴tan tan2 AEF AFC ∠=∠=. ∵CE=AE-AC=x-15,∴tan2(15) CF CE AEF x =⋅∠=-.································(1分)∴ 15 tan2 2(15) AC AFC CF x ∠=== - .··························································(1分)∴AD=x= 75 4 .∴ 75 5542 DE x ==⨯=·········································(1分)综上所述,△AFD为直角三角形时,DE 的长为 4 或 2.
