最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2020年上海市静安区初三二模数学试卷(含答案和解析)

来源:动视网 责编:小OO 时间:2025-10-02 02:30:44
文档

2020年上海市静安区初三二模数学试卷(含答案和解析)

图1CABDO图2ABCDE........................优质文档..........................静安区2019学年第二学期期中教学质量调研九年级数学试卷2020.5(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,
推荐度:
导读图1CABDO图2ABCDE........................优质文档..........................静安区2019学年第二学期期中教学质量调研九年级数学试卷2020.5(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,
图1

C

A

B

D

O 图2

A

B

C

D

E

........................优质文档..........................

静安区2019学年第二学期期中教学质量调研

九年级数学试卷2020.5

(满分150分,100分钟完成)

考生注意:

1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.

2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)

[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列二次根式中,是最简二次根式的为

(A)a 3;

(B)3a ;

(C)a 27;

(D)

3

a

.2.一天有800秒,将这个数用科学记数法表示为

(A)2108⨯;(B)3104.86⨯;(C)410.8⨯;(D)5108.0⨯.3.如果关于x 的方程022=++m x x 有实数根,那么m 的取值范围是

(A)1(B)1≤m ;

(C)1>m ;

(D)1≥m .

4.体育课上,甲同学练习双手头上前掷实心球,测得他5次投掷的成绩为:8,8.5,9.2,8.5,8.8(单位:米),

那么这组数据的平均数、中位数分别是(A)8.5,8.6;(B)8.5,8.5;

(C)8.6,9.2;

(D)8.6,8.5.

5.如图1,□ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断□ABCD 是菱形的为

(A)AO =CO ;(B)AO =BO ;(C)∠AOB =∠BOC ;

(D)∠BAD =∠ABC .

6.如图2,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B 、C 分别与点D 、E 对应,如果B 、D 、C 三点恰好在同一直线上,那么下列结论错误的是(A)∠ACB =∠AED ;(B)∠BAD =∠CAE ;(C)∠ADE =∠ACE ;

(D)∠DAC =∠CDE .

二、填空题:(本大题共12题,每题4分,满分48分)

[在答题纸相应题号后的空格内直接填写答案]7.计算:=÷711a a ▲.8.因式分解:=

-92x ▲

120

100

人数图3

时间(小时)

0.501 1.5220

9.不等式组⎩

⎧<->+01,

23x x x 的解集是

▲.10.方程024=+⋅-x x 的根为▲

11.如果反比例函数x

k

y =

(k 是常数,0≠k )的图像经过点(-5,-1),那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而▲

(填“增大”或“减小”).

12.在四张完全相同的卡片上,分别画有:正三角形、正八边形、圆和矩形.如果从中任意抽取1张卡片,那么这

张卡片上所画图形既是轴对称图形又是中心对称图形的概率是

13.为了解某区24000名初中生平均每天的体锻时间,随机调查了该

区300名初中生.图3是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为

人.

14.运输两批救援物资:第一批220吨,用4节火车皮和5辆货车正

好装完;第二批158吨,用3节火车皮和2辆货车正好装完.如果每节火车皮的运载量相同,每辆货车的运载量相同,那么一节火车皮和一辆货车共装救援物资

吨.

15.如图4,在△ABC 中,点D 在边AB 上,AB =4AD ,设a AB =,

b AC =,那么向量DC 用向量a 、b 表示为

▲.

16.如图5,已知AB 是⊙O 的直径,弦CD 交AB 于点E ,∠CEA =30°,

OF ⊥CD ,垂足为点F ,DE =5,OF =1,那么CD =▲.

17.已知矩形ABCD ,对角线AC 与BD 相交于点O ,AB =6,BC =8,分别

以点O 、D 为圆心画圆,如果⊙O 与直线AD 相交、与直线CD 相离,且⊙D 与⊙O 内切,那么⊙D 的半径长r 的取值范围是

18.如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周

长线”.在直角梯形ABCD 中,AB //CD ,∠A =90°,DC =AD ,∠B 是锐角,12

5

cot =B ,AB =17.如果点E 在梯形的边上,CE 是梯形ABCD 的“等分周长线”,那么△BCE 的周长为

三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分)

计算:

21

22

81

21

)21(12-+++--)(.20.(本题满分10分)

A

D

图5

B

C O F E 图4

A B

C

D

图7

0.8

x (吨)

10

O

y (万元)

20.3

图8

E

D

C

A

B

G

F

H

解方程:

11

2112=-++x x .21.(本题满分10分,每小题满分5分)

已知:如图6,在Rt△ABC 中,∠ACB =90°,BC =12,3

2

cos =B ,D 、E 分别是AB 、BC 边上的中点,AE 与CD 相交于点G .(1)求CG 的长;(2)求tan∠BAE 的值.

22.(本题满分10分,每小题满分5分)

疫情期间,甲厂欲购买某种无纺布生产口罩,A 、B 两家无纺布公司各自给出了该种无纺布的销售方案.A 公司方案:无纺布的价格y (万元)与其重量x (吨)是如图7所示的函数关系;

B 公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求图7所示的y 与x 的函数解析式;(不要求写出定义域)

(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.

23.(本题满分12分,每小题满分6分)

已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .

(1)求证:BG =GF ;

(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH

⋅=2

E

图6

C

B

A

D

G

图9

1

1O

x

y

G

图10

A B

D

C

E

F

24.(本题满分12分,第(1)小题满分4分,第(2)①小题满分4分,第(2)②小题满分4分)

在平面直角坐标系xOy 中(如图9),已知抛物线c bx x y ++-=2

2

1(其中b 、c 是常数)经过点A (-2,-2)与点B (0,4),顶点为M .

(1)求该抛物线的表达式与点M 的坐标;

(2)平移这条抛物线,得到的新抛物线与y 轴交于点C (点C 在点B 的下方),且△BCM 的面积为3.新抛物线的对称轴l 经过点A ,直线l 与x 轴交于点D .

①求点A 随抛物线平移后的对应点坐标;

②点E 、G 在新抛物线上,且关于直线l 对称,如果正方形DEFG 的顶点F 在第二象限内,求点F 的坐标.

25.(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)

在Rt△ABC 中,∠ACB=90°,AC =15,5

4

sin =

∠BAC .点D 在边AB 上(不与点A 、B 重合),以AD 为半径的⊙A 与射线AC 相交于点E ,射线DE 与射线BC 相交于点F ,射线AF 与⊙A 交于点G .

(1)如图10,设AD =x ,用x 的代数式表示DE 的长;(2)如果点E 是

的中点,求∠DFA 的余切值;

(3)如果△AFD 为直角三角形,求DE 的长.

静安区质量调研九年级数学试卷参及评分标准2020.5

一、选择题:(本大题共6题,每题4分,满分24分)

1.A;

2.C ;

3.B;

4.D ;

5.C ;

6.D .

二.填空题:(本大题共12题,满分48分)7.4a ;8.)3)(3(+-x x ;9.11<<-x ;

10.x =4;11.减小;12.3

4;13.4800;14.54;15.b a +-4

1

16.10-17.98<18.42.

三、(本大题共7题,第19~22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=22)12(4223--++-)(·················································(8分)

=236-.············································································(2分)

20.解:1212-=+-x x ············································································(4分)

022=--x x ···············································································(2分)

解得11-=x ,22=x ········································································(2分)

经检验:11-=x 是增根,舍去;22=x 是原方程的根.························(1分)∴原方程的根是2=x .·····································································(1分)

21.解:(1)在Rt△ABC 中,12

182

cos 3

BC AB B =

==.········································(1分)∵D 是边上的中点,∴1

92

CD AB ==.················································(1分)

又∵点E 是BC 边上的中点,∴点G 是△ABC 的重心.····························(1分)

∴22

963

3

CG CD ==

⨯=.·································································(2分)(2)∵点E 是BC 边上的中点,∴1

62

CE BE BC ===.···································(1分)

过点E 作EF ⊥AB ,垂足为F .

在Rt△BEF 中,BF =BE ·cos B =2

3

=,···········································(1分)

∴EF ===··············································(1分)

AF =AB -BF =18-4=14.·········································································(1分)

∴tan∠BAE =

EF AF =··························································(1分)22.解:(1)设一次函数的解析式为y=kx+b (k 、b 为常数,k ≠0).····················(1分)

由一次函数的图像可知,其经过点(0,0.8)、(10,20.3),代入得

⎧=+=+.3.20108.00b k b ,

···············································································(2分)解得⎩⎨

⎧==.

8.095.1b k ,

·················································································(1分)

∴这个一次函数的解析式为y=1.95x+0.8.···········································(1分)

(2)如果在A 公司购买,所需的费用为:y=1.95×40+0.8=78.8万元;··············(2分)

如果在B 公司购买,所需的费用为:2×30+1.9×(40-30)=79万元;········(2分)∵78.8<79,

∴在A 公司购买费用较少.·······································(1分)

23.证明:(1)∵四边形ABCD 是平行四边形,

∴AB =CD ,AB //CD .·········································································(1分)∵AB =AE ,∴AE =CD .·········································································(1分)∴四边形ACDE 是平行四边形.·····························································(1分)∴AC//DE .·······················································································(1分)∴

1==AE

AB

GF BG .··············································································(1分)∴BG =GF .························································································(1分)(2)∵AB =AE ,∴BE =2AE .∵AC =2AB ,∴BE =AC .

∵四边形ACDE 是平行四边形,∴AC=DE .

∴DE=BE .························································································(1分)∵点F 是DE 的中点,∴DE=2EF .

∴AE=EF .·······················································································(1分)∵∠E =∠E ,∴△BEF ≌△DEA .·····························································(1分)∴∠EBF =∠EDA .···············································································(1分)∵AC //DE ,∴∠GAH =∠EDA .

∴∠EBF =∠GAH .

∵∠AHG=∠BHA ,∴△AHG ∽△BHA .·······················································(1分)∴AH

GH BH AH =.∴BH GH AH ⋅=2.·········································································(1分)

24.解:(1)将A (-2,-2)、B (0,4)代入c bx x y ++-=22

1得,21(2)22200 4.b c c ⎧-⨯--+=-⎪⎨⎪++=⎩

,····························································(2分)解得⎩⎨⎧==.

42c b ,∴该抛物线的表达式为:4221

2++-=x x y ;········································(1分)

顶点M 的坐标是:(2,6).··································································(1分)

(2)①∵平移后抛物线的对称轴经过点A (-2,-2),∴可设平移后的抛物线表达式为:k x y ++-=2)221(.·····························(1分)∴C (0,-2+k ).∴32)]2(4[2

1221=⋅+--=⋅=∆k BC S BCM ,···········································(1分)解得k=3.∴3)22

12++-=x y (.······················································(1分)即原抛物线向左平移4个单位,向下平移3个单位可以得到新的抛物线.

∴点A 对应点的坐标为(-6,-5).························································(1分)②设EG 与DF 的交点为H .在正方形DEFG 中,EG ⊥DF ,EG =DF =2EH =2DH .

∵点E 、G 是这条抛物线上的一对对称点,∴EG //x 轴.

∴DF ⊥x 轴,由此可设F (-2,2a ).

∵点F 在第二象限内,∴a >0.∴EG =DF =2EH =2DH =2a .

不妨设点E 在点G 的右侧,那么E (-2+a ,a ).·······································(1分)将点E 代入3)221

2++-=x y (得:a a =+-32

12.···································(1分)解得171-=a ,172--=a (不合题意,舍去).·······························(1分)∴F (-2,272-).··········································································(1分)

25.解:(1)过点D 作DH ⊥AC ,垂足为H .·····················································(1分)

在Rt△AEH 中,4sin 5

DH AD BAC x =⋅∠=,··········································(1分)

x DH AD AH 5

322=

-=.·································································(1分)在⊙A 中,AE =AD=x ,∴x x x AD AE EH 5253=-=-=·······························(1分)

∴5

DE x ==.···························································(1分)(2)∵4sin =5

BC BAC AB ∠=,∴可设BC =4k (k >0),AB =5k ,则AC

k .∵AC =15,∴3k =15,∴k =5.∴BC =20,AB =25.

∵点E 是 DG

的中点,由题意可知此时点E 在边AC 上,点F 在BC 的延长线上,∴∠FAC =∠BAC .

∵∠FCA =∠BCA=90°,AC =AC ,∴△FCA ≌△BCA .∴FC =BC =20.················(1分)∵45tan 225

x DH AED EH x ∠===,又∵∠AED=∠FEC ,且∠AED 、∠FEC 都为锐角,∴tan∠FEC =2.∴2010tan 2

FC EC FEC ===∠.∴AE =AC -EC =20-10=5.·········(1分)过点A 作AM ⊥DE ,垂足为M

,则11522EM ED =

==∵4255sin 5255

x DH AED ED ∠==

,∴sin 5AM AE AED =⋅∠==.(1分)在Rt△EFC

中,EF =.

∴在Rt△AFM

中,11cot 2FM FE EM AFD AM AM +∠====.···········(1分)(3)当点E 在AC 上时,只有可能∠FAD=90°.

∵FC =CE ·tan∠FEC =2(15-x )

,∴)EF x =-.

∴25351555

FD EF ED x x x =+=-+=-).∵5cos 5

EH AED DH ∠==,又∵∠AED=∠ADE ,且∠AED 、∠ADE 都为锐角,

∴cos cos ADE AED ∠=∠=

∴cos5

AD

ADE

DF

∠===.·················································(1分)∴AD=x=

75

8

.∴

75

5584

DE x

==⨯=.·········································(1分)当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF.

∵∠AFC、∠AEF都为锐角,∴tan tan2

AEF AFC

∠=∠=.

∵CE=AE-AC=x-15,∴tan2(15)

CF CE AEF x

=⋅∠=-.································(1分)∴

15

tan2

2(15)

AC

AFC

CF x

∠===

-

.··························································(1分)∴AD=x=

75

4

.∴

75

5542

DE x

==⨯=·········································(1分)综上所述,△AFD为直角三角形时,DE

的长为

4

2.

文档

2020年上海市静安区初三二模数学试卷(含答案和解析)

图1CABDO图2ABCDE........................优质文档..........................静安区2019学年第二学期期中教学质量调研九年级数学试卷2020.5(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top