理想文化教育培训中心 学生姓名: 得分:
1、(2012广东佛山)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【 】
A.平行四边形 B.矩形 C.菱形 D.梯形
2、(2012四川广元) 若以A(-0.5,0),B(2,0),C(0,1)三点为顶点要画平行四边形,则第
四个顶点不可能在【 】
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
3、(2012四川自贡)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于
点E,则线段BE,EC的长度分别为【 】
A.2和3 B.3和2 C.4和1 D.1和4
4、(2012山西省)如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是【 】
A. B. C. D.
5、(2012江苏南通)如图,矩形ABCD的对角线AC=8cm,∠AOD=120º,则AB的长为【 】
A. cm B.2cm C.2cm D.4cm
6、(2012江苏苏州)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,
则四边形CODE的周长是【 】
A.4 B.6 C.8 D. 10
(第3题图) (第4题图) (第5题图) (第6题图)
7、(2012湖北襄阳)如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是【 】
A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG
8、(2012辽宁本溪)在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC
的平行线交BC的延长线于点E,则△BDE的面积为【 】
A、22 B、24 C、48 D、44
9、(2012辽宁丹东)如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.
下列结论:
①∠DOC=90° , ②OC=OE, ③tan∠OCD = ,④ 中,正确的有【 】
A.1个 B.2个 C.3个 D.4个
10、(2012山东泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为【 】
A.3 B.3.5 C.2.5 D.2.8
(第7题图) (第8题图) (第9题图) (第10题图)
11、(2012湖北十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为【 】
A.22 B.24 C.26 D.28
12、(2012四川达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD; ②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。其中正确的个数是【 】
A、1个 B、2个 C、3个 D、4个
13、(2012山东烟台)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为
(4,0),D点坐标为(0,3),则AC长为【 】
A.4 B.5 C.6 D.不能确定
14、(2012青海省)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:CD=AN;
②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.
15、(2012江苏南通)如图,菱形ABCD中,∠B=60º,点E在边BC上,点F在边CD上.
(1)如图1,若E是BC的中点,∠AEF=60º,求证:BE=DF;
(2)如图2,若∠EAF=60º,求证:△AEF是等边三角形.
16、(2012山东泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.
(1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=2,求EM的长.
17、(2012江苏南京)如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点
(1)求证:四边形EFGH为正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积。
18、(2012山东东营)
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
知识点梳理:
名称 | 定义 | 性质 | 判定 | 面积 |
平 行 四 边 形 | 两组对边分别平行的四边形叫做平行四边形。 | 1对边平行; ②对边相等; ③对角相等; ④邻角互补; ⑤对角线互相平分; ⑥是中心对称图形 | ①定义; ②两组对边分别相等的四边形; ③一组对边平行且相等的四边形; ④两组对角分别相等的四边形; ⑤对角线互相平分的四边形。 | S=ah(a为一边长,h为这条边上的高) |
矩 形 | 有一个角是直角的平行四边形叫做矩形 | 除具有平行四边形的性质外,还有:①四个角都是直角; ②对角线相等; ③既是中心对称图形又是轴对称图形。 | ①有三个角是直角的四边形是矩形; ②对角线相等的平行四边形是矩形; ③定义。 | S=ab(a为一边长,b为另一边长) |
菱 形 | 有一组邻边相等的平行四边形叫做菱形。 | 除具有平行四边形的性质外,还有 ①四边形相等; ②对角线互相垂直,且每一条对角线平分一组对角; ③既是中心对称图形又是轴对称图形。 | ①四条边相等的四边形是菱形; ②对角线垂直的平行四边形是菱形; ③定义。 | ①S=ah(a为一边长,h为这条边上的高); ②(b、c为两条对角线的长) |
正 方 形 | 有一组邻边相等且有一个角是直角的平行四边形叫做正方形 | 具有平行四边形、矩形、菱形的性质:①四个角是直角,四条边相等; ②对角线相等,互相垂直平分,每一条对角线平分一组对角; ③既是中心对称图形又是轴对称图形。 | ①有一组邻边相等的矩形是正方形; ②有一个角是直角的菱形是正方形; ③定义。 | ①(a为边长); ② (b为对角线长) |
∵菱形ABCD中,∠B=60°,
∴AB=BC=CD,∠C=180°-∠B=120°。
∴△ABC是等边三角形。
∵E是BC的中点,∴AE⊥BC。
∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°。
∴∠CFE=180°-∠FEC-∠C=180°-30°-120°=30°。∴∠FEC=∠CFE。
∴EC=CF。∴BE=DF。
(2)连接AC。
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF。
∴△ABC是等边三角形。
∴AB=AC,∠ACB=60°。∴∠B=∠ACF=60°。
∵AD∥BC,
∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD。
∴∠AEB=∠AFC。
在△ABE和△AFC中,∵∠B=∠ACF,∠AEB=∠AFC, AB=AC,
∴△ABE≌△ACF(AAS)。∴AE=AF。
∵∠EAF=60°,∴△AEF是等边三角形。
16、【答案】解:(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.
∵AE⊥EF,∠AEB+∠FEC=90°,∴∠AEB+∠BEA=90°。
∴∠BAE=∠CEF。∴△ABE∽△ECF。
(2)△ABH∽△ECM。证明如下:
∵BG⊥AC,∴∠ABG+∠BAG=90°。∴∠ABH=∠ECM。
由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM。
(3)作MR⊥BC,垂足为R,
∵AB=BE=EC=2,
∴AB:BC=MR:RC=2,∠AEB=45°。
∴∠MER=45°,CR=2MR。
∴MR=ER=。∴EM=。
17、【答案】(1)证明:在△ABC中,E、F分别是AB、BC的中点,EF=AC。
同理FG=BD,GH=AC,HE=BD。
∵在梯形ABCD中,AB=DC,∴AC=BD。
∴EF=FG=GH=HE,∴四边形EFGH是菱形。
设AC与EH交于点M,
在△ABD中,E、H分别是AB、AD的中点,则EH∥BD,同理GH∥AC。
又∵AC⊥BD,∴∠BOC=90°。∴∠EHG=∠EMC=90°。
∴四边形EFGH是正方形。
(2)解:连接EG。
在梯形ABCD中,∵E、F分别是AB、DC的中点,
∴。
在Rt△EHG中,∵EH2+GH2=EG2,EH=GH,
∴,即四边形EFGH的面积为。
18、【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF(SAS)。∴CE=CF。
(2)证明: 如图,延长AD至F,使DF=BE.连接CF。
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF。
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠ECF=∠BCD=90°。
又∠GCE=45°,∴∠GCF=∠GCE=45°。
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG(SAS)。∴GE=GF,
∴GE=DF+GD=BE+GD。
(3)如图,过C作CG⊥AD,交AD延长线于G.
在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°。
又∠CGA=90°,AB=BC,
∴四边形ABCD 为正方形。 ∴AG=BC。
已知∠DCE=45°,
根据(1)(2)可知,ED=BE+DG。
∴10=4+DG,即DG=6。
设AB=x,则AE=x-4,AD=x-6,
在Rt△AED中,∵DE2=AD2+AE2,即102=(x-6)2+(x-4)2。
解这个方程,得:x=12或x=-2(舍去)。
∴AB=12。
∴。
∴梯形ABCD的面积为108。