§2.1.1 函数的概念和图象
经典例题:设函数f(x)的定义域为[0,1],求下列函数的定义域:
(1)H(x)=f(x2+1);
(2)G(x)=f(x+m)+f(x-m)(m>0).
当堂练习:
1. 下列四组函数中,表示同一函数的是( )
A. B.
C. D.
2函数的图象与直线交点的个数为( )
A.必有一个 B.1个或2个 C.至多一个 D.可能2个以上
3.已知函数,则函数的定义域是( )
A. B. C. D.
4.函数的值域是( )
A. B. C. D.
5.对某种产品市场产销量情况如图所示,其中:表示产品各年年产量的变化规律;表示产品各年的销售情况.下列叙述: ( )
(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;
(2)产品已经出现了供大于求的情况,价格将趋跌;
(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;
(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( )
A.(1),(2),(3) B.(1),(3),(4) C.(2),(4) D.(2),(3)
6.在对应法则中,若,则 , 6.
7.函数对任何恒有,已知,则 .
8.规定记号“”表示一种运算,即. 若,则函数的值域是___________.
9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .
10.函数的值域是 .
11. 求下列函数的定义域 : (1) (2)
12.求函数的值域.
13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).
14.在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,△ABM的面积为S.
(1)求函数S=的解析式、定义域和值域;
(2)求f[f(3)]的值.
§2.1.2 函数的简单性质
经典例题:定义在区间(-∞,+∞)上的奇函数f(x)为增函数,偶函数g(x)在[0,+∞ )上图象与f(x)的图象重合.设a>b>0,给出下列不等式,其中成立的是
f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)
③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)
A.①④ B.②③ C.①③ D.②④
当堂练习:
1.已知函数f(x)=2x2-mx+3,当时是增函数,当时是减函数,则f(1)等于 ( )
A.-3 B.13 C.7 D.含有m的变量
2.函数是( )
A. 非奇非偶函数 B.既不是奇函数,又不是偶函数奇函数 C. 偶函数 D. 奇函数
3.已知函数(1), (2),(3)
(4),其中是偶函数的有( )个
A.1 B.2 C.3 D.4
4.奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x-1,则函数f(x-1)的图象为 ( )
5.已知映射f:AB,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的,在B中和它对应的元素是,则集合B中元素的个数是( )
A.4 B.5 C.6 D.7
6.函数在区间[0, 1]上的最大值g(t)是 .
7. 已知函数f(x)在区间上是减函数,则与的大小关系是 .
8.已知f(x)是定义域为R的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且,则和的大小关系是 .
9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.
10.点(x,y)在映射f作用下的对应点是,若点A在f作用下的对应点是B(2,0),则点A坐标是 .
13. 已知函数,其中,(1)试判断它的单调性;(2)试求它的最小值.
14.已知函数,常数。
(1)设,证明:函数在上单调递增;
(2)设且的定义域和值域都是,求的最大值.
13.(1)设f(x)的定义域为R的函数,求证: 是偶函数;
是奇函数.
(2)利用上述结论,你能把函数表示成一个偶函数与一个奇函数之和的形式.
14. 在集合R上的映射:,.
(1)试求映射的解析式;
(2)分别求函数f1(x)和f2(z)的单调区间;
(3) 求函数f(x)的单调区间.
§2.1.3单元测试
1. 设集合P=,Q=,由以下列对应f中不能构成A到B的映射的是 ( )A. B. C. D.
2.下列四个函数: (1)y=x+1; (2)y=x+1; (3)y=x2-1; (4)y=,其中定义域与值域相同的是( ) A.(1)(2) B.(1)(2)(3) C.2)(3) D.(2)(3)(4)
3.已知函数,若,则的值为( )
A.10 B. -10 C.-14 D.无法确定
4.设函数,则的值为( )
A.a B.b C.a、b中较小的数 D.a、b中较大的数
5.已知矩形的周长为1,它的面积S与矩形的长x之间的函数关系中,定义域为( )
A. B. C. D.
6.已知函数y=x2-2x+3在[0,a](a>0)上最大值是3,最小值是2,则实数a的取值范围是( )
A.07.已知函数是R上的偶函数,且在(-∞,上是减函数,若,则实数a的取值范围是( ) A.a≤2 B.a≤-2或a≥2 C.a≥-2 D.-2≤a≤2 8.已知奇函数的定义域为,且对任意正实数,恒有,则一定有( ) A. B. C. D. 9.已知函数的定义域为A,函数y=f(f(x))的定义域为B,则( ) A. B. C. D. 10.已知函数y=f(x)在R上为奇函数,且当x0时,f(x)=x2-2x,则f(x)在时的解析式是( ) A. f(x)=x2-2x B. f(x)=x2+2x C. f(x)= -x2+2x D. f(x)= -x2-2x 11.已知二次函数y=f(x)的图象对称轴是,它在[a,b]上的值域是 [f(b),f(a)],则 ( )A. B. C. D. 12.如果奇函数y=f(x)在区间[3,7]上是增函数,且最小值为5,则在区间[-7,-3]上( ) A.增函数且有最小值-5 B. 增函数且有最大值-5 C.减函数且有最小值-5 D.减函数且有最大值-5 13.已知函数,则 . 14. 设f(x)=2x+3,g(x+2)=f(x-1),则g(x)= . 15.定义域为上的函数f(x)是奇函数,则a= . 16.设,则 . 17.作出函数的图象,并利用图象回答下列问题: (1)函数在R上的单调区间; (2)函数在[0,4]上的值域. 18.定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f()≤[f(x1)+f(x2)],则称函数f(x)是R上的凹函数.已知函数f(x)=ax2+x(a∈R且a≠0),求证:当a>0时,函数f(x)是凹函数; 19.定义在(-1,1)上的函数f(x)满足:对任意x、y∈(-1,1)都有f(x)+f(y)=f(). (1)求证:函数f(x)是奇函数; (2)如果当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是单调递减函数; 20.记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,y0)为坐标的点是函数f(x)的图象上的“稳定点”. (1)若函数f(x)=的图象上有且只有两个相异的“稳定点”,试求实数a的取值范围; (2)已知定义在实数集R上的奇函数f(x)存在有限个“稳定点”,求证:f(x)必有奇数个“稳定点”. §2.2指数函数 经典例题:求函数y=3的单调区间和值域. 当堂练习: 1.数的大小关系是( ) A. B. C. D. 2.要使代数式有意义,则x的取值范围是( ) A. B. C. D.一切实数 3.下列函数中,图象与函数y=4x的图象关于y轴对称的是( ) A.y=-4x B.y=4-x C.y=-4-x D.y=4x+4-x 4.把函数y=f(x)的图象向左、向下分别平移2个单位长度,得到函数的图象,则( ) A. B. C. D. 5.设函数,f(2)=4,则( ) A.f(-2)>f(-1) B.f(-1)>f(-2) C.f(1)>f(2) D.f(-2)>f(2) 6.计算. . 7.设,求 . 8.已知是奇函数,则= . 9.函数的图象恒过定点 . 10.若函数的图象不经过第二象限,则满足的条件是 . 11.先化简,再求值: (1),其中; (2) ,其中. 12.(1)已知x[-3,2],求f(x)=的最小值与最大值. (2)已知函数在[0,2]上有最大值8,求正数a的值. (3)已知函数在区间[-1,1]上的最大值是14,求a的值. 13.求下列函数的单调区间及值域: (1) ; (2); (3)求函数的递增区间. 14.已知 (1)证明函数f(x)在上为增函数;(2)证明方程没有负数解. §2.3对数函数 经典例题:已知f(logax)=,其中a>0,且a≠1. (1)求f(x); (2)求证:f(x)是奇函数; (3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则( ) A. B. C. D. 2.设表示的小数部分,则的值是( ) A. B. C.0 D. 3.函数的值域是( ) A. B.[0,1] C.[0, D.{0} 4.设函数的取值范围为( ) A.(-1,1) B.(-1,+∞) C. D. 5.已知函数,其反函数为,则是( ) A.奇函数且在(0,+∞)上单调递减 B.偶函数且在(0,+∞)上单调递增 C.奇函数且在(-∞,0)上单调递减 D.偶函数且在(-∞,0)上单调递增 6.计算= . 7.若2.5x=1000,0.25y=1000,求 . 8.函数f(x)的定义域为[0,1],则函数的定义域为 . 9.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是 . 10.函数图象恒过定点,若存在反函数,则的图象必过定点 . 11.若集合{x,xy,lgxy}={0,|x|,y},则log8(x2+y2)的值为多少. 12.(1) 求函数在区间上的最值. (2)已知求函数的值域. 13.已知函数的图象关于原点对称. (1)求m的值; (2)判断f(x) 在上的单调性,并根据定义证明. 14.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称. (1)求函数y=g(x)的解析式及定义域M; (2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数. §2.4幂函数 经典例题:比较下列各组数的大小: (1)1.5,1.7,1; (2)(-),(-),1.1; (3)3.8,3.9,(-1.8); (4)31.4,51.5. 当堂练习: 1.函数y=(x2-2x)的定义域是( ) A.{x|x≠0或x≠2} B.(-∞,0)(2,+∞) C.(-∞,0)[2,+∞ ) D.(0,2) 3.函数y=的单调递减区间为( ) A.(-∞,1) B.(-∞,0) C.[0,+∞ ] D.(-∞,+∞) 3.如图,曲线c1, c2分别是函数y=xm和y=xn在第一象限的图象, 那么一定有( ) A.n 4.下列命题中正确的是( ) A.当时,函数的图象是一条直线 B.幂函数的图象都经过(0,0),(1,1)两点 C.幂函数的 图象不可能在第四象限内 D.若幂函数为奇函数,则在定义域内是增函数 5.下列命题正确的是( ) 幂函数中不存在既不是奇函数又不是偶函数的函数 图象不经过(—1,1)为点的幂函数一定不是偶函数 如果两个幂函数的图象具有三个公共点,那么这两个幂函数相同 如果一个幂函数有反函数,那么一定是奇函数 6.用“<”或”>”连结下列各式: , . 7.函数y=在第二象限内单调递增,则m的最大负整数是_______ _. 8.幂函数的图象过点(2,), 则它的单调递增区间是 . 9.设x∈(0, 1),幂函数y=的图象在y=x的上方,则a的取值范围是 . 10.函数y=在区间上 是减函数. 11.试比较的大小. 12.讨论函数y=x的定义域、值域、奇偶性、单调性。 13.一个幂函数y=f (x)的图象过点(3, ),另一个幂函数y=g(x)的图象过点(-8, -2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x)< g(x)的解集. 14.已知函数y=. (1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间. 基本初等函数Ⅰ单元测试 1.碘—131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有 一半的碘—131会衰变为其他元素).今年3 月1日凌晨,在一容器中放入一定量的碘 —131,到3月25日凌晨,测得该容器内还 剩有2毫克的碘—131,则3月1日凌晨,放人该容器的碘—131的含量是( ) A.8毫克 B.16毫克 C.32毫克 D.毫克 2.函数y=0.5x、 y=x-2 、y=log0.3x 的图象形状 如图所示,依次大致是 ( ) A.(1)(2)(3) B.(2)(1)(3) C.(3)(1)(2) D.(3)(2)(1) 3.下列函数中,值域为(-∞,+∞)的是( ) A.y=2x B.y=x2 C.y=x-2 D.y=log ax (a>0, a≠1) 4.下列函数中,定义域和值域都不是(-∞,+∞)的是( ) A.y=3x B.y=3x C.y=x-2 D.y=log 2x 5.若指数函数y=ax在[-1,1]上的最大值与最小值的差是1,则底数a等于 A. B. C. D. 6.当0A.(1-a)>(1-a)b B.(1+a)a>(1+b)b C.(1-a)b>(1-a) D.(1-a)a>(1-b)b 7.已知函数f(x)=,则f[f()]的值是( ) A.9 B. C.-9 D.- 8.若0<a<1,f(x)=|logax|,则下列各式中成立的是( ) A.f(2)>f()>f() B.f()>f(2)>f() C.f()>f(2)>f() D.f()>f()>f(2) 9.在f1(x)=,f2(x)=x2,f3(x)=2x,f4(x)=logx四个函数中,当x1>x2>1时,使[f(x1)+f(x2)] 10.函数,给出下述命题:①有最小值;②当的值域为R;③当上有反函数.则其中正确的命题是( ) A.①②③ B.②③ C.①② D.①③ 11.不等式的解集是 . 12.若函数的图象关于原点对称,则 .