的理念及总体目标
课程标准的基本理念
课程标准的理念和目标,是非常重要的两部分内容,课程标准的理念,从五个方面来阐述,分别从数学教育,课程内容,教学方式,评价还有新技术,这几个方面来阐述。
(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
课程标准基本理念的第一条,是一个总的论述。 正因为是义务教育,所以强调要面向全体学生,义务教育阶段是面向所有学生发展的阶段。
这里强调两个要点,第一,人人都能获得良好的数学教育,面向全体学生,使每一个学生都接受良好的数学教育。每个学生都要提高数学素养,进而提高学生的公民素养,数学素养是学生公民素养的一个重要组成部分。义务教育重要的任务就是使学生将来能够成为一个社会需要的、具有良好的素养、各方面能够健康发展的公民。他们有良好的数学素养是非常重要,所以良好的数学教育就是让每一个学生获得他所需要的良好的数学素养。
第二,不同的人在数学上得到不同的发展,这个是针对学生的差异,因为每一个学生都要接受义务教育,而在学生的发展和学生原有的基础存在很大的差异。良好的数学教育,使每一个学生都得到一样的教育,得到一样的机会,但最后的发展可能是有差别的。根据学生的智力的差异,根据兴趣的不同,标准特别强调要照顾到学生的个别差异,使每一个学生都能获得他所应该得到的发展。
在任何国家,数学教育都是一个具有基础性、发展性的一个学科,一般在很多国家都把它叫做核心课程,或者说它在某种意义上,和语文、外语等成为一个人发展的非常重要的一个基础。所以在义务教育阶段,要保证人人都得到发展。才能保证一个国家的基本教育水平。不是有人可以学数学,有人可以不学数学,而是所有的人都必须接受一个良好的数学教育。因为义务在某种意义上,带有一定“强迫性”。
良好的数学教育并不是要以分数为目标的。当然希望学生具有一定的考试能力,也能考出一个好分数,但是这不是数学教育的全部,所以怎样营造一个良好的数学教育氛围是特别重要的。在知识技能方面,在过程与方法方面,在理解数学的基本思想和积累数学活动经验方面,在情感态度、价值观方面,都需要为学生营造一个良好的氛围。这样的想法,也是制订课程标准的一个基点。
(二)课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。
课程内容的组织要重视过程、处理好过程与结果的关系,要重视直观、处理好直观与抽象的关系,要重视直接经验、处理好直接经验与间接经验的关系。
课程内容的呈现应注意层次性和多样性。
这一条对课程内容做了一个描述,课程内容要反应社会的需要,数学的特点要符合学生的认知规律,这是课程内容选取的一个基本原则。另一个基本原则是社会的需求,比如说,为什么在课程要增加统计,原来没有,现在有了,一个非常重要的原因,就是因为社会的需求。当学生迈入社会以后,他所碰到的大量的数据,怎么样能从这些数据里得到对自己有用的信息。而不上当受骗,这就需要有一种能力,需要有一种识别和判断的能力。
这样的需求就使得数学课程,在内容上要做调整,要把统计作为数学课程的一个主要的内容。所以现在小学、初中、高中、大学,都需要学习有关统计的知识。
另外就是数学课程要符合数学本身的特点,数学发展的非常快。一个发展的标志就是数学应用的广泛性,数学自身的发展很快,在不同的领域都能得到应用,在经济、在社会等等方面,所以就出现了一些新的数学,比如说,经济数学、金融数学、社会数学、生物数学等等。数学本身的这些变化,势必会反应到课程的内容。所以在课程里就增加了关于数学的应用,培养学生的应用意识。特别是设置了综合与实践活动,综合的利用数学知识去解决问题。符合学生的认知规律是确定课程内容重要原则。
课程内容不仅要包括数学的结果,也要包括数学结果的形成过程和它蕴含的数学思想方法。
从学生的需要,从数学本身的需要,从数学的结果和过程这两个方面,在选择课程内容时都要重视。标准里后一段在讲述课程内容的组织和内容的选择,怎样组织方面,包括在教材中如何去组织,在教学过程中如何组织,在内容组织上,强调了三个方面,一个是过程和结果,一个是直观和抽象,一个是直接经验和间接经验,在标准里边,特别强调了在课程组织上,内容的组织上,要重视过程,处理好过程和结果的关系,重视直观,处理好直观和抽象的关系,重视直接经验,要处理好直接经验和间接经验的关系,这三对是呈现表述和教师在具体的教学中,应该重视,重视结果数学要有结果,要有精辟的结果,要得到一个答案,这个没有问题,但是还要重视过程,重视学生的学习过程,在内容的选择上,在内容的呈现上,在例题、习题的选择和呈现上,重视过程是非常重要的,使学生在知识形成过程中理解数学。
直观和抽象也是数学中一个非常重要的一对关系,数学是抽象的,这个没有问题,抽象的思维能力,抽象能力,要在数学中培养,但抽象能力的培养,要有直观作为铺垫,作为一个学生,这是思考抽象问题的一个支柱,所以说,重视直观的作用是非常重要的,而学习的内容,多半是间接经验,这个是没有问题,但是这种间接经验的形成,也需要一些直接经验的积累,所以课程里边特别强调活动经验的积累,其实也是处理好直接经验和间接经验这样的关系。
(三)教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。应当使学生有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。
有效的教学活动,应该是学生学和教师教的统一,进一步阐述了刚才说的这个过程,学生是学习的主体,教师是学习的组织者、引导者和合作者。这样一个理念,现在很多老师也都能琅琅上口,但真正要实践它的,也不是一件很容易的事情,但是标准这样明确的提出来,也值得老师进一步的思考,怎样在实践中去践行。
另外这个标准谈到了教学活动,除了刚才谈到的这几个方面,这样一个过程特点,还应该注重激发学生的兴趣,包括调动学生的积极性,引发学生思考,鼓励学生的创造性思维,培养学生良好的学习习惯,使学生掌握恰当的数学学习方法。这一点也应该是教学设计或开展教育活动首先要想到的一条。教学活动的目的是要让学生对数学感兴趣,希望通过的努力,让学生不要失去对数学学习的兴趣,帮助学生养成良好的习惯,有了好的习惯,才能够学好数学,才能够有信心。
接下来要讲学习方式的重要性。
数学的学习,应该是有多样的方式,这里强调一点,学生学习应该是一个生动、活泼的、主动和赋予个性的过程。就是要使教学过程、学习过程更加生动活泼。在这个标准里边列举了一些学习的方式,比如说接受学习,动手实践,探索合作交流,同样都是学习数学的重要方式,让老师在实际的教学活动中,应该灵活的根据实际需要,选择多种学习的方式,既有一定的接受式的学习,同时更应该重视动手操作,自主探索与合作交流。
近些年来老师在实践中,其实已经探索了很多改进学习方式的很好案例,他们在教学中,开发了各种课程资源,让学生动手操作,设计很好的教学情境,让学生自己探索,让学生合作交流。这样的多种教学方式运用,合理的运用,在数学教学的改革过程中应该引起重视。重要的就是像标准说的,要给学生足够的时间和空间去展现他的学习,在足够的时间空间中,去经历观察实验猜测计算推理验证等等各种活动,这样就使数学的学习活动更加丰富多彩,而不是单调的去听,自己去练,改变这种单调的这种学习方式。
( 四)学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自自己、建立信心 。激励不只是表面的表扬一下,在学习过程中,不仅是对学生学习成绩的评价,也包括对学生学习过程的评价,对学生学习态度的评价,都是一个激励的过程。改进教师的教学,不仅是看学生学的怎么样,还应该通过学生学的怎么样,来看教师教学的组织和教学的效果,透过学生的学来看教师的教,反应了教学过程的效果和效率。
有效的教学,其实更重要的看学生的学习效果怎么样,所以说,这种评价还要看教师,通过学生的表现,折射出教学过程是否需要改进,所以说,改进教学这个作用,这个功能是评价中最重要的。这个意义上来说,评价不仅是对学生,而且是对教师,特别是对教师改进教学起了重要的作用,所以说,应该特别重视这种评价的目标和功能。
我们强调要建立目标多元、方法多样的评价体系,评价目标的多元,不仅要指向于基础知识和知识技能,还应该重视学生的学习过程,重视学生的情感态度,重视学生思维能力和数学思考等等方面的评价,评价应该指向多元的课程目标,所以说评价目标应该是多元的,方法也应该是多样的。
评价的方法不仅是充分的利用纸笔测验,考试当然要保留,但要改进,同时,用多元的评价方法,包括过程性的评价,包括智力的评价,成长记录带,课程观察,学生的活动过程的记录等等,这些都应该做一种评价的方法,近些年在评价方法的改革与创新这方面,的重点其实做了很多好的探索,这方面其实有非常多的案例,供老师去参考。
(五)信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
信息技术的发展,对于数学教育的价值、目标、内容,以及教学方式产生了很大的理解,实际上信息技术在某种意义上改变了的生活,到底会对教育产生多么大的影响,现在来评价还有点为时过早。希望老师能够充分的认识到信息技术可能会给教育带来的潜在的好处。
信息技术不仅在教学中,而且在评价中,在学生的交流中,在老师和学生互动的过程中,都可能会发挥作用。
孩子对于信息技术,特别是网络技术,有特殊的敏感性。在某种意义上来说,他们很快就能掌握,所以建议尽量采取疏导的方式,让信息技术在教学的发展中,发挥更大的作用。
从信息技术的角度来说,一个是搜集信息的能力,一个是利用信息的能力,在数学教学里面,不仅是演示一个 PPT ,最主要的是学生利用现在技术去搜集信息,去利用信息,数学的学习有很多方面是需要学生搜集社会上的、生活中的一些信息,这个搜集信息的方式手段有很多,可以简单的去观察一些信息,观察一些数据,这也是搜集。然后还可以利用现代的互联网去搜集一些信息,然后就是利用这些信息解决问题,然后把它变成一种资源,用到学习过程里,感受不只在书本上学习,在日常生活中也可以学习。利用信息技术的作为工具,在标准里面,也强调了把现代信息技术作为学生学习数学和解决问题的有利工具,就是体现了这样一点。要运用各种手段去搜集和利用各种信息来学习数学,解决数学问题。
信息技术还帮助学生进行探究活动,它还是能够发挥很大的作用,使用图形计算机,使用 I-Pad ,已经进入了美国某些学校的高中课堂,去做些探究活动等等的。使用信息技术这么几个阶段,一个就是 CaI ,计算机辅助教学,就是做 PPT 演示,第二个是作为工具。就是作为一种探究工具的使用,这个在数学教育中,也发挥了一些作用。第三个层次就是作为一个搜集、整理信息的一个工具,这个是大大开拓了学生的视野,包括数学学习。比如说得到的数学定理,到底有哪些证明,上网一点,马上就会搜集很多,学生就可以进行研究,可以提升自己的认识。
另外还有一点就是信息技术可以作为一个交流,交流就意味着可以相互评价,可以师生互动,可以把学生和老师的某些问题的看法放在同一个平台上,进行交流,互相帮助。所以总的来说,信息技术会给提供帮助的领域,应该还会不断的发展和开拓,所以希望老师能够关注这些。
小学数学数与代数 1
专题 1 :数的认识、数的运算、常见的量的内容分析与建议
在这个模块中 我们主要和大家交流数与代数领域中的数的认识、数的运算和常见的量的内容,关于这部分内容,我们一线教师作了交流,主要集中在以下四个问题。
1.如何建立“数”的概念?
2. 如何处理运算教学中的算理与算法的关系?
3. 如何落实新课标对估算的要求?
4. 如何依托现实情境帮助学生体现和理解常见的量。
内容 | 学段 | 《标准》要求的调整和变化 |
数的认识 | 第 一 学 段 | “ 知道用算盘可以表示多位数 ” 。 “ 能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。 ” |
第 二 学 段 | 不再要求 “ 比较百分数的大小 ” 和 “ 探索小数、分数和百分数之间的关系 ”
|
二、在建立数概念中要注意的问题
(一) 在整数的认识中要注意的问题
建立正确的数的概念是认数教学的任务,也是学生学习数学的起点 。 理解数的意义一般有两个角度 , 一是从数的组成去理解,通过组成理解数的大小和多少,加强对数的感知。二是联系生活实际来体会 ,通过在具体的现实情境中,理解数在生活实际中的意义,使抽象的数和具体的量有机的结合,进一步理解数的意义。在实际教学中 我们要把这两种方式有机地结合起来 ,这样 更有利于学生体会数的意义,建立数的概念。在整数数概念的建立过程中要注意以下几点:
1. 依托多种形式建立整数数概念
( 1 )在具体情境中理解数的意义
学生对数并不陌生,在入学之前,学生已对具体的数有了比较丰富的感知,他们会读、会写,会说一些具体的数。我们在教学中就要关注从现实情景抽象出数的过程,例 如从具体的 2 匹马, 2 棵树, 2 头牛, 2 个人,抽象为 2 这个数。这时用一个数字也是一个特殊的符号来表示数量,已经把具体的单位和这个数量的具体含义去掉,抽象为数“ 2 ”。反过来, 2 可以表示任何具有 2 这样数量特征的事物,例如 2 只铅笔, 2 个人、 2 只小动物……,随着教学的深入,还要引导学生认识到数的丰富含义,比如 计数的数、数量的数、度量的数和计算的数。
( 2 )用操作帮助学生具体感知
自然数的认识的教学重点在于使学生从数量抽象到数, 抽象离不开直观的支撑和 操作,例如:计数器、小棒、图形等等,让学生亲自的数一数,摆一摆,圈一圈、画一画,学生数的过程也是一一对应的过程,同时感受具体的数量。
( 3 )多种模型的表征
在数的认识过程中,我们要注意运用多种模型帮助学生理解数的意义建立数的概念,比如说:计数器、数位桶,方格图、数位顺序表等,这样逐渐 建立起抽象的数和现实中的数量之间的关系,并且能够知道这个大小和现实中的多少之间的关系,这也是数感很重要的本质问题。例如,一位老师在教学《万以内的数的认识》时,就运用方块模型帮助学生建立一万的概念,理解数的意义。
通过方格模型的演示,让学生体会 10 个一是十, 10 个十是一百, 10 个一百是一千, 10 个一千是一万……,通过几何图形的点、线、面、体,使学生在头脑中建立“一、十、百、千”的映像,同时建立十个千就是一个万,在学生的头脑中建立一个清晰的模型“满十进一”,对于学生理解基数单位和位值制是有很大好处的。
2. 把握核心概念, 重视数位和位置值的理解
为了表示更大的数,数位概念的建立是十分重要的。数位的含意是不同位置上的数字表示不同大小的数,没有数位的规定就没有办法表示更大的数。认识个、十、百、千、万等不同的数位,理解不同数位上的数字表示不同大小的数,是理解整数概念所必须的。学生必须清楚地了解,同样一个数字“ 3 ” ,在个位上表示 3 个一;在十位上表示 30 ,即 3 个十;在百位上表示 300 ,即 3 个百。第一学段完成整数万级的认识,第二学段认识万以上的数,进而整理十进制计数法。我国的计数单位是每四位一级,万以内数的个位、十位、百位、千位为个级,学生理解各级上的每个数字的意义,这是理解多位数各个数位上的数字意义的前提条件。我国计数单位是四位一级,在国际上普遍使用的是三位一级,在学习时可以让学生了解。 在历史上,曾经出现过以 2 、 3 、 4 为原始的数基,比较多的是以 5 、 20 、 60 为数基,即五进制、二十进制、六十进制。当然,最多的是以 10 为数基,即现在世界各国通用的十进制,即 重要的“满十进一”的方法。
在古代文明中,世界各国大多数都是采用十进制,例如中国、古罗马。但十进位记数法,离十进位值制还有关键的一步“位置值制要走。所谓“位值制”,是指相同的计数符号由于所处的位置不同可以表示大小不同的数目。有了位值制,就可以用有限的数字表示出无限的自然数,这是记数历史上的一个创造,一个奇迹。因此马克思在他的《数学手稿》一书中称十进位值制记数法为“最妙的发明之一”。
( 1 )重视 10 的概念的建立
一个 十 和几个 一 是十几 , 这就是位值制的基础 , 这样 10 个数字就可以表示出生活中无限多的物。教学中建立好概念非常重要。在教学 10 的认识时要让学生亲自感受到由 9 再加 1 变成 10 的过程,可以通过数、摆、捆、拨、说等活动,让学生感受 10 个一是 1 个十。在 11-20 各数的认识中仍然要关注 10 的概念的建立,让学生体会满十进一的过程。
( 2 )重视数计数单位:
为帮助学生了解十进制计数法 和位值制。要重视数计数单位 逐步建立新的计数单位,10 个一是 1 个十,10 个十是一百,10 个百是一千,10 个千是一万,10 个万是十万,10 个十万是一百万,10 个百万是一千万,从而引出新的计数单位十万,在一个单位、一个单位地数的活动中,学生充分体会每数满 10 个单位就产生一个新的计数单位,感受了两个相邻计数单位间的进率是十。
( 3 )重视数位顺序表的使用
随着认识的数越来越大教师应不断扩充完善数位顺序表,从认识 20 以内 的数起就让学生了解个位和十位,认识百以内数时补充认识百位,在认识万以内数的时候第一次出现了数位顺序表,在认识整数的最后一个单元里学生将认识万级和亿级的数以及比亿更大的数。数位顺序表可以分两次扩展,先扩展到万级,再扩展到亿级。数位顺序表有助于学生了解十进制计数法,理解数的意义并掌握读、写数的方法。
3. 关注对大数的感受
在第一、二学段都提出感受大数意义和对大数进行估计的要求。第一学段是要求在生活情境中感受大数的意义,第二学段情境的范围有所扩大,要求在现实情境中感受大数的意义。其本质是相同,都是希望通过具体的情境对大数加以感受,增加学生的数感。感受大数与情境的具体内容有关, 1200 张纸大约有多厚?你的 1200 步大约有多长? 1200 名学生站成做广播操的队形需要多大的场地?这些具体的情境学生可以通过实际操作和观察感受。有时还要加入想象的成份, 1200 名学生需要多大场地,许多学校可能没有这么多人,学生就需要了解自己的学校有多少人,占多大地方,再想象 1200 人会占多大地方。
这个抽象过程在小学一年级开始认识数时就强调,直到认识较大的数。学生逐渐认识数的抽象表示,逐步建立数概念。
(二)在建立分数概念中要注意的问题
教师在数的认识的教学中 普遍认为分数的认识是数认识教学中的一个难点。 分数起源于分,当平均分出现不是整数结果的时候,逐渐有了分数的概念。后来,在土地测量、产品分配等过程中 , 常常得到不是整数的结果,便产生了分数。分数的产生经历了一个漫长的过程,分数的真正来源在于自然数除法的推广。
1. 加强对分数丰富意义的理解
教师要了解分数意义的多重多元性,才能引导学生深刻理解分数的意义。 对分数意义的理解应关注以下两个主线和四个层面:
两个主线
即“比的线索”和“数的线索”。“比”指的是一部分与另一部分之间的关系;“数”指的是以有理数形式出现的分数,此时的分数表现的是一个结果。
分数意义理解的四个层面
“比率” 是指部分与整体的关系和部分与部分的关系。其中部分与整体的关系更多地体现在真分数的含义中。例如一个圆平均分成 4 份,每一份是整体的 。又例如,长方形中的一部分是整个长方形的 ,整体图形的面积应该是多少?显然,整体图形的面积应该是这样的三份。这里的 和 所反映的就是取的份数与整体份数之间的关系。 而部分与部分之间的关系更多地表现为是一种“记号”。例如小红有 5 个苹果,小丽有 3 个苹果,小红的苹果是小丽的 倍。对比率维度的理解,可以帮助学生完成对分数的基本性质以及通分、约分等相关知识的正确认识。
“度量” 指的是可以将分数理解为分数单位的累积。例如 里面有 3 个 ,就是用分数 作为单位度量 3 次的结果。著名数学家华罗庚曾经说过:“数起源于数,量起源于量。”对度量维度的研究,可以大大丰富学生对分数的认识。度量维度的体验也可以直接作用于分数加(减)法的学习中。
“运作” 主要指的是将对分数的认识转化为一个运算的过程。例如,求 6 张纸的 是多少张纸,学生将 理解为整体 6 张纸的 ,即将 6 张纸这个整体平均分成 3 份,取其中的 2 份,列出算式就是 6 ÷ 3 × 2 ,也就是 6 × 。
“商” 这个维度主要是指分数转化为除法之后运算的结果,它使学生对于分数的认识由“过程”凝聚到“对象”,即分数也是一个数,也可以和其他数一样进行运算。
以上这四个维度没有先后之分,主次之别,它们对学生多角度认识分数都发挥着重要的作用。它们相辅相成,共同承担着学生对于分数内涵丰富性认识的建构。
2. 利用多种模型帮助学生理解分数的意义
在小学阶段教材中往往以学生熟悉的日常事物与活动为模型,建立分数的概念。例如把一个月饼平均分为两份,其中的一份是 个,把一张纸平均分为为四份其中的一份是 ,这仅仅是从“面积模型”的角度来理解分数,学生理解分数可以借助于多种“模型”。
( 1 )分数的面积模型:用面积的“部分—整体”表示分数
儿童最早是通过“部分—整体” 来认识分数,因此在教材中分数概念的引入是通过“平均分”某个“正方形”或者“圆”取其中的一份或几份(涂上“阴影”)认识分数的,这些直观模型即为分数的“面积模型”。
( 2 )分数的集合模型:用集合的“子集—全集”来表示分数
这是“部分—整体”的另外一种形式,与分数的面积模型联系密切,但学生在理解上难度更大,关键是“单位 1 ” 不再真正是“ 1 个整体”了,而是把几个物体看作“ 1 个整体”,作为一个“单位”,所取的“一份”也不是“一个”,可能是“几个”作为“一份”,例如,把 4 个桃子看作“单位 1 ” 平均分成 2 份,每份 2 个占整体的 。分数的集合模型需要学生有更高程度的抽象能力,其核心是把“多个”看作“整体 1 ”。
( 3 ) 分数的“数线模型”:数线上的点表示分数
3. 把握好每一阶段完成的任务
在小学阶段,对于分数意义的学习,教材一般“显性”地分为两个阶段:第一学段分数的初步认识和第二阶段分数的意义。但实际上,基于对于分数意义内涵丰富性的理解,我们逐步认识到,对于分数意义的学习,决不是一两次教学所能全部承载和实现的,需要通过系列设计,逐步渗透、度建立,将教材中的“显性”和“隐性”结合起来。我们应该如何把握每一阶段的教学呢?
第一阶段:认识平均分。
第二阶段:在分数的初步认识教学中,帮助学生初步建立部分与整体关系的认识,感受分数。
第三阶段:在分数意义和分数基本性质的教学中,重点使学生发展对于分数理解的比率、度量的维度。
第四阶段:在分数与除法关系的教学中,重点使学生发展对于分数理解的运作、商的,
第五阶段:在分数的运算及解决问题的教学中,鼓励学生综合运用对于分数意义理解 的多个维度。
必须指出的是,这五个阶段不是相对孤立的,更不是线性排列的,不能僵化地理解为到了某一阶段就必须或者只能达成对某维度的学习,其他维度将不再涉及。这四个阶段在完成对分数意义丰富认识方面各有侧重,相互渗透,相互补充,共同帮助学生实现对分数意义理解的不断发展和整体建构。
总之分数的认识是一个循序渐进的过程,需要系统的进行教学设计,才能使学生真正理解熟练运用。
(三)在建立小数数概念中要注意的问题
在分数初步认识学习的基础上,教材安排了小数的初步认识。 小数的出现标志着十进制记数法从整数(自然数)扩展到了分数,使分数与整数在形式上获得了统一。由此可见 小数和整数、分数有着密切的联系。
1. 利用知识迁移建立小数概念
分数的学习对小数的学习特别是小数意义的理解有直接显著的影响 , 后者的学习对前者也有促进作用 , 例如 8 分米是十分之八米是学生已有的知识 , 只要通过提问 , 引起学生的回忆和思考 , 还可以写成 0.8 米 , 也就是同一对象的两种不同形式 , 使小数和分数建立起直接的联系 , 使学生进一步体会到 : 十分之几和一位小数 , 百分之几和两位小数之间的关系 。
再如把正方形平均分表示其中的若干份,以及用数轴表示数,这是认识整数、分数时常用的模型 , 可以将其拓展到小数 。 例如:把一个正方形平均分成 10 份 100 份 , 其中的若干份既可以用分数表示 , 也可以用小数表示 ,这样能够 帮助学生理解的小数意义,建立小数的模型,培养学生的数感 。
2. 沟通整数、小数、分数之间的关系
( 1 ) 沟通整数和小数的关系。 整数与小数的计数方法是一致的 , 相邻两个计数单位间的进率都是 10 , 小数的计数方法是整数计数方法的扩展 , 教学中要设计相应的教学环节将整数的计数方法迁移到小数 , 为学生在计数的经验和方法上建立联系 , 不仅如此 , 还要利用这些活动帮助学生整理认数系统 , 把原来认识的整数数位表扩充到小数 。
( 2 )沟通分数和小数的关系: 小数和分数上的沟通,主要是意义上的沟通,使学生理解小数是十进分数。
( 3 )沟通分数、整数、小数之间的关系。
关于小数和整数、分数有着密切的联系,在整数学习的基础上,学习了小数, 小数的表征形式与整数相似, 数位顺序表得到补充, 都是十进制。如果以个位为基础,向右扩展就是十位、百位、千位;如果向左扩展就是十分之一位(十分位),百分之一位(百分位)等。 换句话说:以个位为对称轴,两边的数位呈现了对称的关系,只是小数部分在位前增加了“分”;这样“每相邻的两个计数单位之间的进率都是 10 ”得到了全面的概括;小数是十进分数。 从这个意义上说,对小数的理解比对分数的理解更容易一些。
整数可以数,一个一个地, 一十一十地数,一百一百地数, 小数可以数: 0.1 、 0.2 、 0.3 、 0.4 、 0.5 、 0.6 、 0.7 ……分数可以数:……
以此类推。这列数是按照一个单位进行数数的,无论是整数、小数、分数它们都是计数单位的累加。
3. 把握好小数认识的两个阶段的教学
我们知道关于小数的初步认识可以从学生熟悉的计量单位:元、角、分和米制系统(米、分米、厘米)来帮助学生学习。并不涉及到小数的计数单位和数位;到了第二学段学习小数的意义时,才抽象出小数的计数单位和数位,以及完善数位顺序表…… 两个学段的重点不同,呈现的方式和学习的方式也应当有区别。要根据学生的实际选择合适的学习方法,帮助学生理解小数的意义。
三、 建立数概念教学的具体建议
(一)在数认识中体现数感。 数感的建立非常重要,教师要设计多种活动培养学生的数感。
(二) 整体把握内容之间的联系: 两个学段相关内容的整体把握和递进与衔接。
(三)鼓励学生进行数学交流,关注数的应用 。关于数的认识包括从数的意义、数的表示、数和数之间的关系、数的应用;其中数的应用不仅仅是一条主线,而且渗透在整个学习中。教学中要提供机会鼓励学生运用数来表示日常生活中的一些事物,并进行交流。
问题二: 如何处理运算教学中算理与算法的关系
一、 《课标》对“数的运算”有什么新要求
新课程标准中明确指出,在数学课程中,应当注重发展学生的运算能力。 运算能力主要是指能够根据法则和运算律正确地进行运算的能力。 培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。同时在《课标解读》中也强调“应当淡化对运算的熟练程度的要求,选择正确的计算方法,准确地得到运算结果,比运算的熟练程度更重要。应当重视学生是否理解了运算的道理,是否能准确地得出运算的结果,而不是单纯地看运算的速度。”这一目标的提出就要求教师在数的运算教学中,不能仅仅关注于学生运算技能的掌握,更要注重学生理解算例、掌握算法的学习过程,也就是在教学中要注重将算理与算法有机的结合在一起,从而发展学生的运算能力。
学习数的运算的过程就是发展逻辑思维能力的过程,数的运算的概念、性质、法则、公式之间都有内在联系,存在着严密的逻辑性。每个概念、性质、法则、公式的引入与建立,都要经过抽象、概括、判断、推理的思维过程。学生学习、理解和掌握“数的运算”内容时都要经过从具体到抽象、从感性到理性的过程,学生把这些应用到实际中去, 还要经过由一般到特殊的演绎过程。因此,数的运算的学习有利于发展学生的思维能力。这就需要教师在教学的过程中不仅仅关注结果、关注方法更要关注得到结果、得到方法的思维过程,这个思维过程就是学生理解算理、掌握算法的过程。小学生仍然以直观形象思维为主,而算理、算法又十分抽象,因此如何结合学生的思维特点处理好运算教学中算理与算法的关系,往往就是教学的难点所在。我们可以结合学生的年龄特点借助生动有趣的童话情境、借助直观模型、借助学生已有的认知基础和生活经验,处理好运算教学中算理与算法的关系。
二、如何处理运算教学中算理与算法的关系
(一)借助生动有趣的童话情境,处理好运算教学中算理与算法的关系。
小学生,尤其是低年级的学生,他们更多的是以形象思维为主,因此创设生动有趣的童话情境,不仅能够很好地调动他们的学习积极性,更能够借助童话情境帮助他们理解算例、掌握算法。
北京小学 魏来红 老师在教学《 20 以内进位加法》一课中,就是为学生创设了学生喜爱的小动物上车的童话情境( PPT )。首先 魏 老师通过让学生在第一站帮助 9 个小动物上车,来复习十加几的口算,学生的积极性一下子就被调动了起来,为他们能够运用学过的知识帮助小动物而感到高兴。接下来再通过第二站帮助 5 个小动物上车,复习连加,并通过追问“有什么好方法能让我们算得又对又快?”使学生感受到先凑“十”再算“十加几”简便快捷,为理解“进位加”的算理做好了孕伏。 5 个小动物上车后,与在第一站上车的 9 个小动物合起来,这时车上一共有多少个小动物?从而引出了 9+5= ?这一进位加法。如何计算 9+5= ?学生结合生动、形象、具体的现实情境,很快就想到把 5 分成 1 和 4 , 1 和 9 组成 10 , 10 加 4 等于 14 。就这样学生在轻松、愉悦的童话情境中,顺利的理解和掌握了进位加的算理与算法。
通过这节课我们看到,魏老师正是能够很好的结合学生的年龄和心理需求以及他们的思维特点,创设了学生感兴趣、喜爱的童话情境,使枯燥的数学变得生动有趣,使抽象的算理变得直观形象,使学生在明理中顺利、自然的掌握了算法。
(二)借助直观模型,处理好运算教学中算理与算法的关系。
在皇城根小学史冬梅老师上的《两位数乘两位数》一课中,史老师结合三年级学生的思维特点,借助直观模型较好地处理了算理与算法的关系。史老师在这节课上没有将会写“竖式”作为最终的教学目标,而是在学生已经能够初步掌握竖式计算方法的基础上,引导学生探寻方法背后的道理。并提供给学生直观的点子图作为研究素材,在研究中,学生们呈现了丰富多彩的成果。虽然学生们的分法不完全相同,但“先分后合”的思路是一致的,这一点恰恰就是乘法竖式运算的基本思路。在这之后,史老师再次将分点子图与竖式中的四句口诀进行了对应,引导学生一步步深入地理解竖式计算中每一个细节背后的道理。“分点子图”不仅给学生创造了积累活动经验的宝贵机会,同时又使学生能够借助直观模型,较好的理解了两位数乘法算法背后的道理。
在我们以往的教学中,不少老师或者不重视引导学生探索计算的过程,或者当学生刚刚探索出方法后,就立即引导学生学习竖式,在学生对竖式运算的每个环节没有真正理解的情况下就开始追求计算方法。这就很可能造成学生在没有真正理解道理的情况下,只能靠记忆法则来习得方法和技能。这显然对学生的发展是不利的,史老师这节课恰恰是为学生真正地、扎扎实实地经历理解的过程提供了鲜活而典型的案例。在教学中教师要舍得拿出时间让学生有机会经历,有机会感受,有机会理解,有机会创造。新的课程标准中也明确提出了学生活动经验的目标,它背后深远的意义还需要广大教师在自己的实践中开动脑筋,深入挖掘,潜心感悟。
(三)借助学生已有的认知基础和生活经验,处理好运算教学中算理与算法的关系。
北京小学于萍老师曾经上过的《小数加减法》一课,在这节课中于老师就是借助学生已有的认知基础和生活经验,帮助学生理解小数加减法的算理。于老师让学生自主进行编题,其中就有一名学生编出了一道 0.8+3.74= ,这种类型将要揭示的“小数点对齐”是本节课的重点所在,也是小数加减法总结算法的重要时机。为了让学生有机会调动已有的整数加减法的认知经验,经历判断、推理、抽象的思维过程,于老师就让每个学生自己试做,并说明自己这样做的道理。
师:你们以前做过很多很多加减法题,无一例外的都是把末位的两个数字对齐,可这道题为什么不末位对齐呢?
生:整数的末位是个位,末位对齐也就是个位对齐了。而小数的末位不一定是相同的,所以不能末位对齐。
师:你们虽然没把末位对齐,但把谁对齐了?
生:把小数点对齐,也就是相同数位对齐。
师:你看得很深、很准,这样做肯定有这样做的道理。可为什么一定要小数点对齐、要相同数位对齐呢?
生 1 :如果不对齐算出来就错了。
生 2 :如果不把小数点对齐,而把末位对齐的话,十分位的 8 就和百分位的 4 对齐了,相加之后肯定就不对了。
生 3 :我举个例子说吧,比如买两样东西,一个是 0.8 元,另一个 3.74 元,如果把末位的 8 和 4 相加,就是用 8 角加 4 分,那肯定不对了。
师:我们研究同一个问题时可以从不同角度研究,比如,可以讲道理,也可以举例子。刚才这道题,就有同学想到了用我们都熟悉的“元角分”举例子来解释,简单的事说明了深奥的道理,你真棒。看来只有相同计数单位的个数才能够相加减。
小结:原来看似和整数加减法不太一样的“小数点对齐”其实和“末位对齐”一样,都是为了确保“相同数位对齐”,而相同数位对齐背后的道理就是“相同计数单位的个数直接相加减”。你们不仅找到了方法,还理解了方法背后的数学道理,真了不起。
小数加减法在小学“数与代数”的学习领域中占有什么位置?如何把握它与整数加减法的关系?在这节课中又该如何呈现知识的本质,抓住核心概念进行教学? 于萍 老师的教学实践回答了上面的问题。教师在引导学生探究小数加减法计算方法的过程中,始终抓住了本节课知识的“魂”实施教学,她没有满足学生能正确地计算出结果,而是步步深入引导学生逼近数学本质的理解。引发学生对小数加减计算道理的深刻理解,即:小数加减法与整数加减法的本质意义是一致的,即相同的计数单位相加减。像这样,将“讲理”与“明法”有机的结合,让学生在理解算理的基础上总结算法,有助于学生更深入地理解数学核心概念,才能够更好地 实现“培养学生根据法则和运算律正确地进行运算的能力。”的目标。
三、 对“数的运算”教学的建议
(一)处理好算理直观与算法抽象的关系 。这个理是学生不容易理解的,教师可以通过现实情境、直观的图、学生已有的知识基础等帮助学生去理解。
(二)处理好算法多样化与算法优化的关系 。算法多样化,要关注学生的个性,可能这个学生适合这样的方法,那个学生喜欢另一种方法,但是它们背后的道理是一样的,老师要想办法通过不同的方法,让学生去理解这个道理,使学生能够更有效的进行数学学习。
(三)处理好技能训练与思维训练的关系 。它不是一种单纯的、机械的、做题量的积累,在这个过程当中,要注重帮助学生积累经验,发展思维。
(四)注重计算与日常生活以及解决问题的联系 。学习加减乘除的计算,最终要为解决问题服务,在解决问题过程中,让学生体会到计算方法的实际价值。
问题三 如何落实新课标对估算的要求
一、《课标》对“估算”有什么新要求
课标修订版中加强了对“估计”以及“选择适当的单位”进行简单估算。如何理解“选择适当的单位”进行简单的估算?
例如:学校组织 987 名学生去公园游玩。如果公园的门票每张 8 元,带 8000 元钱够不够?
解决此题的适当方法是把 987 人看成 1000 人,所以适当的单位是“ 1000 人”。结合具体情境,选择适当的单位是第一学段估算的核心。在对大数进行估计的时候,选择合适的单位也很重要。教室到学校体育馆有多远,就应当选用米作单位。而从家到学校有多远,就要选择千米作单位。太阳到地球的距离就要用光年作单位。
第一学段的估算强调在具体的情境中选择合适的单位,刚才的例子是选择了 1000 人作单位。一般来说,估计教室的长度时,通常以“米”为单位;估计书本的长度时,通常以“厘米”为单位。也可以用身边熟悉的物体的长度为单位,如步长、臂长等。教学中,要让学生结合实际熟悉一些常见的计量单位真正了解其长短,大小和轻重等,并在头脑中建立起相应的表象。
二、如何把握估算教学的内容及其要求
(一)为什么教
• 估算在日常生活中有着广泛的应用。
• 有利于人们事先把握运算结果的范围,是发展学生数感的重要方面。
• 为判断计算器、口算和笔算结果是否合理提供了依据。
• 在具体情境中估算,有利于学生提高判断、选择的能力。
• 估算有利于培养学生做事的计划性。
• 估算对学生后续的数学学习有重要作用。
(二)教什么
关于“教什么”要依据新课标中的要求,展开教学。至少教学要涉及“估算方法”、“估算策略”。
估算方法:
①凑整的方法。 如凑成一个整十、整百的数。
②取一个中间数。 如32、37、 30 和39这四个数求和,这些数都很接近35,有的比35多一点,有的比35少一点,就取一个中间数35,直接用35×4,就大约地计算出了这几个数相加的结果。
③用特殊的数据特点进行估数。如126 × 8,就可以想到125 × 8,125的8倍,就得到1000。
④寻找区间。 也就是说叫寻找它的范围,也叫做去尾进一,去尾就是只看首位,那么只看首位的时候,估得的结果就是它的至少是多少;进一就是首位加一,假如说278,就看成了300,首位加一,这样就是它最多可能是多少,这样得到一个范围,就是寻找它的区间范围。
⑤ 大小协调。 两个数,一个数 往大了估,一个数往小了估,或者一个数估一个数不估。
⑥先估后调。
⑦利用乘法口诀凑数。 这种方法一般用于除法的估算,一般用除数乘一个整十数、整百数或整百整十数,如果乘积最接近被除数,则这个数就是除法估算的商。如 358÷6 ,用除数 6 乘整十数 60 ,其积 360 最接近被除数 358 ,那么整十数 60 即是所求的商。
(三)怎么教?
估算教学,不是单纯的教给学生记住一种估算的方法,而是通过我们的课堂教学,使 学生逐步地去理解估算的意义和价值,发展学生估算的意识。在这个过程当中,应当多增加一些学生的体验,不断地丰富学生这方面的经验,并逐步加以积累。
教学建议:
1. 整体把握估算教学,把估算意识的培养作为重要的教学目标
所谓整体把握估算教学,就是要把握自己所教估算教学部分的知识结构与地位,要知道自己所教学的估算知识部分在整个小学阶段处于什么位置 ? 对今后的估算学习能起到什么作用 ? 要在自己所教的一段达到什么样的目标 ? 这样一来在教学中就会做到游刃有余,心中有数。
学习估算的开始阶段,对学生来说可能有一定的难度,或许会影响一点教学进度或计算速度,这时老师不能为了赶进度而着急,应该给学生充分理解的空间和时间。要知道开头的 “ 慢 ” 正是为了不久之后的 “ 快 ” 和 “ 好 ” 。
在教学中 首先要考虑估算的教学目标,如果把目标仅仅定位在就教会凑整估算,或是见到 “ 大约 ” 就要估算,做一些机械的训练,可能就会给学生形成一种错误的定势。而估算教学中,首要重要的如何培养学生近似的意识,这是我们数学教学本身应该关注的问题,应该作为重要的教学目标来进行实施。
引导学生在问题情境的对比中,选择估算或精确计算,不断地积累这方面的经验。作为数学教师,要想办法搜集或者捕捉一些好的素材,在具体的问题情境当中让学生去感受,什么样的问题解决需要近似值,就是需要估算,哪些问题解决一定要算出精确值,比如“全家吃饭”饭费大约200元,就是估算。没有必要精确地计算。但作为饭店的收银员就需要精确计算,估算显然不行。
2. 要选好题目,提出好问题,让学生体会估算的意义和价值。
作为教师,在教学设计当中,首先要选好题目,提出有估算价值的问题。比如,三位数除以两位数,你估一估这道题,它的商是几位数?这个问题就有价值。另外,只有选好题目、提出好问题学生才能自觉体会到估算的价值,学生有了对估算价值这种体验以后,他的估算意识才能不断增强。
另外,鼓励学生利用估算来验证计算结果,养成好习惯。估算教学,要结合具体的问题情境让学生体会到估算的意义和价值,结合学生的实际,尤其是已有的知识水平和生活经验提出合适的问题,才能使得学生对估算的意义有深刻的体会,尤为重要的是,给学生充分的交流时间和空间,通过学生的交流让学生解释过算的过程。
面对不同的算式,学生有时用计算器计算,有时用精确笔算,结果对不对,特别是积的位数、商的位数,准确不准确,可以先用估算的方法,来确定一下它大致的取值范围,这样可以帮助学生来验证计算的结果。估算意识的培养,应该从点点滴滴做起,使学生逐步地养成一种习惯,形成这种良好的习惯以后,他会自觉地进行估算。
3. 鼓励方法多样化,重视交流、解释过程,让学生进行合理估算。
由于学生对于相关数学知识和技能的掌握情况及思维方式、水平不同,在估算中方法会多种多样。教师要积极鼓励学生估算方法多样化,应让学生充分交流,表达自己的想法,了解他人的算法,使学生体会到解决同一个问题可以有不同的方法,促进学生进行比较和优化。
估算结果是多样的,要关注估算结果是否合情合理。在估算教学中让学生交流估算方
法尤其重要,只要切合估算的目的或解决问题的需要就是好方法。因此不同的情境会选择不同的估算方法。
教师教学中要强化估算意识并结合教学内容作好估算示范。这种示范并不是包办,而是给予适当的引导,让学生在科学的范围内进行估算,同时对好的方法加以强调,进行合理的估算。
4. 做好对估算的有效评价
( 1 )对估算意识的评价
首先看一个案例,摘自 TIMSS 的测试:
保罗用 $5 去购买牛奶、面包和鸡蛋。当他到达商店时,发现这三种食品的价格如下图所示:
在下列哪种情况下使用估算比精确计算有意义?
A. 当保罗试图确认 $5 是否够用时;
B. 当销售员将每种食品的价钱输入收银机时;
C. 当保罗被告知应付多少钱时;
D. 当销售员数保罗所付的费用时。
这个题目设计的比较巧妙,它通过一个具体问题,考察学生能否在具体情境下对是否需要计算估算进行判断,也就是考察学生是否具备了一定的估算意识。此题对我们的最大启发是,估算意识也是可以考察的。因此在进行估算评价时,也要重视对估算意识的考察。
( 2 )对估算策略的评价
估算分为:一种是根据实际问题来进行估算,一种是脱离实际问题的情境,纯算式的进行估算。
• 根据实际问题,选择合理的估算策略,结果合理即为正确
学生只要能够解决实际问题,那这个估算就应该是合理的,这是针对着解决实际问题来说的。老师需要认识到,估算结果并不是与实际情况越接近就越好,只要合理即为正确。什么是合理,只要估算的结果,能够有效地解决问题就是合理。
• 纯试题的估算,只要结果落在一定的区间内,即为正确;但要根据不同年龄的学生的认知实际,给予针对性的评价
有一些题目,脱离了实际问题情境,属于纯算式的估算,在这种情况下,我们提出:不能简单地把估算结果是否与精确值最接近作为唯一的标准, 只要能够落在区间内,就视为是合理的。 这个区间,也就是它的取值范围。
同时,不同年龄的学生,要有不同的评价标准。如低年级学生刚刚接触估算,它的估算结果落在一个范围比较大的区间内,我们觉得就可以。高年级的学生已经有了一定的估算经验,就要引导他不断地进行再反思,再调整。举个例子来说: 78 × 365 积大约是多少,刚开始学习的时候,学生可能这样估 70 × 300 ,或者 80 × 300 ,或者 80 × 400 ,这样我们都可以视为是合理的。有了一定的计算技能以后,老师要引导学生不断地去进行反思,还可以估成 80 × 350 ,这时候的范围就比原来要小多了。
• 数学中比较重视估算结果是否落在了合适的数量级中
数量级也就是十、百、千,万……,换句话说就可以用 10 的多少次次方。如上面提出的 TIMSS 测试题中有一道题的备选答案很有意思,“史密斯家每星期的用水量是 6000 升 ,他家每年的用水量大约是多少升?”让学生从下面的答案进行选择。
A.30000 B.240000 C.300000 D.2400000 E.3000000
这正是在考察学生对数量级的了解。一年 52 个星期, 52 × 6000 ,结果为十万数量级,再加上肯定比三十万大,所以结果为 C 。
关于评价估算策略的问题,我们认为学生们估算的策略不同,只要是合理的,就应当
鼓励他们大胆地尝试,鼓励他们积极解释自己的观点,交流自己的看法。在这个过程当中,肯定会有很多有价值的东西在课堂中涌现出来,教师要小心翼翼地去呵护住学生们的这份探究的精神,不要轻易地用一两句话就否定一种方法。教师不要急于给予评判,给孩子一种宽松的氛围,让孩子不断地学会调整,不断地学会反思,提升孩子这种判断的能力。
问题四:如何依托现实情境,帮助学生理解常见的量
一、《课标》中对“常见的量”的要求是什么
在小学阶段“常见的量”基本在第一学段出现,主要有货币单位、时间单位和重量单位。《课程标准修订版》中这一部分内容并没有太大的变化。而在以往的教学中,一些教师对于《课程标准》中“理解常见的量”的具体要求,落实得还不够到位。对这一部分内容的教学,有的教师仅仅停留在让学生能够认识这些常见的量,并能够进行单位间的简单换算。那么针对这一问题,我们在课堂教学中应如何准确的落实“理解常见的量”这一具体目标呢?
二、如何帮助学生理解常见的量
(一)依托现实生活情境, 帮助学生理解常见的量。
数学课程标准中提倡让学生在生活情境中感受数学。北京市宣武师范附属第一小学耿爽老师上的《克和千克》,和北京小学走读部朱洁老师上的《认识时间》,都能够依托现实生活情境,帮助学生体现和理解常见的量。
在《克和千克》一课中 耿 老师注重依托现实生活情境,从学生熟悉的生活情境引入学习(从超市中买回的各种商品及生活中常见的与克和千克有关的情境),揭示本节课的学习内容,这样的引入能较好的 激发学生兴趣,同时给孩子发现数学问题的机会,也让学生感受到“克和千克”与日常生活的密切联系。
在《认识时间》一课中,朱老师将认识时间与学生在学校的作息时间相结合,这样就能够调动学生已有的、熟悉的生活经验,帮助他们认识钟表,理解常见的时间单位。
(二)依托现实活动情境, 帮助学生理解常见的量。
实践是最好的老师,只有学生们亲身经历了才会印象更深。因此 除了依托现实的生活情境,我们还可以依托现实的活动情境,帮助学生理解常见的量,建立正确的质量观念、时间观念等。
例如: “ 克和千克”的学习对于学生来说有一定困难,学生虽然在生活中接触过质量问题, 感知过轻和重,也曾经在商品标识上看见过千克、克,但多数学生都不知道它们是质量单位,不知道它们之间的进率 ,对于 1 克 或 1 千克 到底有多重,更是知之甚少。并且人们对质量的感受力并不强,同一物品掂与提、左手与右手、每人的承受力等,感受结果不同。同时物体的体积与物体的质量不一定是统一的,这些都给学生认识质量单位造成了困难。 宣武师范附属第一小学 的 耿 老师,在教学《克和千克》一课中,就为学生准备了大量的可操作的物品,为学生留出探究的空间,使学生能够通过掂一掂、称一称等活动,在感受 1 千克 和 1 克 的过程中,认识克和千克,同时帮助学生 建立正确的质量观念。
再如:时间单位的认识 对于学生来说是很抽象的概念,没有可视可触的形状与颜色,看不见、摸不着,让他们来掌握抽象的时间概念难度很大。所以发展孩子的时间感必须与日常生活的具体事件联系起来,使之有可以感知的具体内容。 在《认识时间》一课中,通过让学生体验 1 分钟能干什么?(拍球能拍多少下,跳绳能跳多少下,写字能写多少个),使学生体会、感受、理解 1 分钟有多长,帮助学生建立时间观念。
三、有关“常见的量”的教学建议
(一)争取家长的配合与支持,提前为学生学习“常见的量”积累生活经验。
由于“常见的量”这一部分内容对于第一学段的学生来说比较抽象,因此生活经验是否充足,将会影响到学生对这部分知识的学习。如果学生平时在生活中能经常接触到相关知识,他就能在这一方面学得很好,例如:学生平时有经常跟随家长购物的经验,学习人民币的相关知识就会轻松很多。反之,生活经验的缺失会使学生不易理解,造成学习上的困难。
(二)运用多种教学策略,将“常见的量”与现实生活有机结合。
教学中应注重运用多种教学策略,使“常见的量”的学习更贴近学生。要注重为学生提供多重学习素材,充分利用好学具,调动学生多种感官参与学习,为学生提供动手实践、自主探索、观察与思考、发现、表达的机会,激发学生的参与意识和积极性,让学生学会在实际中运用所学知识解决实际问题。 | ||
小学数学数与代数 2 问题框架: 1. 如何在方程教学中帮助学生经历从算术思维向代数思维过渡? 2. 如何在正反比例教学中体现函数思想? 3. 如何处理好 “ 问题解决 ” 教学中生活情境具体和数量关系抽象的关系? 4. 如何在教学中凸显问题解决的策略? 具体内容: “数与代数”部分是义务教育阶段数学课程的重要内容。这部分的内容包括数的概念、数的运算、数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式,函数等。 数的概念是学生认识和理解数学的开始,从自然数逐步扩展到有理数、实数,学生将不断增加对数的理解和运用。数的运算伴随着数的形成与发展不断丰富,从最基本的自然数四则运算,扩展到有理数的运算。伴随着字母的引入,代数式和方程的出现是数及其运算的进一步抽象。 本专题中,我们和您交流的内容主要涉及后面两部分,下面我们结合新课标,聚焦几个老师们实践中的问题,进行深入的交流。 一、在方程教学中帮助学生经历从算术思维向代数思维过渡 1. 方程教学的目标 对式与方程这部分内容,课标有如下具体要求: 1.在具体情境中能用字母表示数。 2.结合简单的实际情境,了解等量关系,并能用字母表示。 3. 能用方程表示简单情境中的等量关系(如 3x+2 = 5 , 2x-x = 3 ),了解方程的作用。 4.了解等式的性质,能用等式的性质解简单的方程。 在每个学生数学学习的历程中,“字母” 的出现都是一次认识上的飞跃。在“字母表示数”以及“方程”教学中,要肩负着帮助学生从算术思维向代数思维进行过渡。学习“字母表示数”的过程是帮助学生建立数感与符号意识的重要过程,是学习和认识数学的一次飞跃,同时也是学生今后继续学习代数式、整式、分式和根式等一系列概念及相关运算的重要基础,具有非常重要的意义,需要引起高度重视,并贯穿于学习数与代数的始终。 在小学的第二学段 中就安排了“式与方程”的内容,就是要引导学生在具体情境中会用字母表示数;结合简单的实际情境,了解等量关系,并能用字母表示。从第一学段过渡到第二学段,随着学生年龄的增长,思维水平和理解能力也在逐渐提高。这一时期的学生正处在由具体形象思维向抽象逻辑思维过渡阶段。在第一学段的基础上,第二学段不仅扩大了数的认识和运算的范围,同时在较为抽象的水平上初步认识代数知识和渗透函数思想。 引入简易方程的价值在于,为学生提供用代数方法解决问题的途径。小学阶段解决问题的基本方式是算术方法。基本的数量关系模型一是求和的关系(部分 + 部分 = 整体),二是求积的关系(每份数 × 份数 = 总量)。具体的表现为加、减、乘、除的意义。算术方法解决问题基本上是根据加减乘除四则运算的含义,分析问题中的数量关系,列出一个算式。这个算式的基本特征是将已知的数量构成的算术式使其结果等于所求的数量。 例如: 小明原来有一些铅笔,爸爸和妈妈又分别给他买 10 枝新铅笔,这时他一共有 38 枝铅笔,原来小明有几只铅笔? 用算术方法列出的算式是: 38-10 × 2= 而用方程来解要先用字母 x 表示原来铅笔的数量。按照数量关系,可以列出方程: X+10 × 2=38 后者是直接用部分 + 部分 = 总体的思路,未知数 X 和其它已知数一起进行运算。而前者是求和逆运算,即已经和与一个部分,求另一个部分。在解决较为复杂的问题时,方程与算术方法的区别会更为明显。 对于解方程, 《标准》明确指出“用等式的性质解简单的方程”。等式的性质反映了方程的本质,将未知数和已知数同等看待。这正是代数思维与算术思维的基本区别。 开始从算术方法到代数方法可能显得比较繁琐,特别是对于简单的数量关系,用算术方法操作起来更为容易,但在解简单方程时仍倡导老师们关注用等式性质的思路,一方面它体现着代数 方法的本质,另一方面也是与第三学段方程学习的重要衔接。 2.从算术思维向代数思维过渡,是学生认知发展的飞跃。 【片段 1 】赵震 —— 《用字母表示数》 赵老师通过“神奇的魔盒”,让学生充分经历输入数与输出数的游戏,发现规律、验证规律、总结规律、概括规律,从“图形 ( △ → □ ) ” 到“字母”、从无关系的字母( a→b )到揭示规律的字母( a→a+10 ),引导学生产生简明表达规律的内需 —— “用字母表示数”,真正理解字母表示数的价值。 【片段 2 】赵震 —— 《用字母表示数》 对,我也听过 赵 老师这节课,唱儿歌 —— 《数青蛙》: 一只青蛙一张嘴,两只眼睛四条腿。 两只青蛙两张嘴,四只眼睛腿。 三只青蛙三张嘴,六只眼睛十二条腿。 …… 让学生边拍手边有节奏地哼唱,与此同时课件不断显示更多的青蛙,直到多得数不清,这 时赵 老师问:还能唱吗?学生感到有困难了,于是教师发给学生每人一个小条,试着写一写。 学生在练习纸上填: 生 1 :无数只青蛙无数张嘴,无数只眼睛无数条腿。 生 2 : a 只青蛙 b 张嘴, c 只眼睛 d 条腿。 生 3 : a 只青蛙 a 张嘴, b 只眼睛 c 条腿。 生 4 : a 只青蛙 a 张嘴, aa 只眼睛 aaaa 条腿。 生 5 : a 只青蛙 a 张嘴, 2a 只眼睛 4a 条腿。 通过倾听学生的发言与交流,展现了学生不同的结论及不同的思维层次: 例如:生 1 还没有达到“用字母表示数”的水平,停留在用语言来描述数量及关系; 生 2 虽然达到了“用字母表示数”的水平,但没有表示出数量关系; 生 3 走近了“用字母表示数”,有了一定的数量关系,但是不全面; 生 4 走近了“用字母表示数”,明白数量关系,但是表示不准确,有待教师的引导; 生 5 真正走进了“用字母表示数”,既用字母表示出了数,又准确地表示出了数量之间的关系。 赵 老师在课堂上,通过学生喜欢的、生动的“说儿歌”活动,让学生在数的过程中感受到“数”的具体,并由此产生寻求更简洁、更概括的表示方法的心理需求。这为“字母表示数”的引出奠定了积极而充分的情感基础。这个过程既是新知识的学习过程,更是学生由原有的算术思维水平不断向代数思维水平迈进的过程。孩子们在一句句诵读儿歌的过程中,完成了思维水平的提升,完成了从数的具体到字母抽象的过渡。 从数字运算到字母运算。在此过程中,教师要紧紧把握好符号意识。 绝大多数学生,经历认识上的这个过渡时,都不会自然而然、简简单单就完成的。需要教师精心地设计活动,让每个学生都有机会经历,有机会感悟,才可能慢慢地完成从算术思维向代数思维的过渡。 的确,小学生在相当长的时间里是以算术思维为主的,但伴随着学习的不断深入,从算术思维过渡到代数思维是每一个学生必须面对的。这个飞跃对于大多数学生而言都会存在不同程度的困难,都将是一次挑战。这个过渡是个过程,而且这个过程的长短对不同的学生而言也会存在差异,教师在教学中首先应重视对学生代数思维的培养。应对不同的学生给予不同的关注和辅导,允许一部分学生在经历一段时间的学习和积累渐渐达到要求,完成过渡。与此同时,教师还应着眼于学生的发展,整体把握目标的达成。也就是说,“字母表示数”及“方程”相关内容的学习是在第二学段高年级出现的,但对学生代数思维的培养,不一定也不应该等到这个时候才开始。在前面的很多内容教学中应该有意识地孕伏,让学生有机会在不同内容的学习中“找感觉”,积累经验,不断地为完成好认识上的重要飞跃打基础。 3.在低、中年级孕伏代数思维 这是北京小学杜雪飞老师执教的“找算式中的数朋友”一课。这是二年级“表内除法”单元中的练习课,源于对教材中的一道练习题。 既然学生从算术思维向代数思维过渡需要孕伏,那么这样的孕伏就不能,也不应该仅仅是高年级老师的教学任务。各年段的教师都应该善于捕捉恰当的内容,善于寻找恰当的时机,选择恰当的方式,及时训练代数思维,让学生在活动中有所感,有所悟。本课内容的开发,便抓住了学生认知中的这个困难点,通过一系列活动使之变得形象,易于学生接受。 可以说,在相当长的时间里,对于很多学生而言“ = ”更像一个从左向右的单方向箭头( ),因为算式总是先知道数据和符号,通过运算得出结果。今天这节练习课中,杜老师将为学生们创造“倒着想”的机会,把“逆向”思考作为突破口,让“ = ”在孩子们的头脑中变成“双向”的。这是对等式左右两边“相等”关系的更深入的理解,同时也是孩子们迈向代数思维的重要启蒙。这是教师在低年级教学中为学生长远发展奠定基础的有益尝试。 长期以来,在小学阶段教学简易方程,方程变形即解方程的主要依据是四则运算各部分间的关系。而新课程标准指导下的教材中更强调了“等式性质”的教学,这样设计的意义又是什么呢? 这是一个老师们普遍存在的问题。其实,如果仅以“解方程”为目标的话,也能用四则运算各部分关系及等式性质都是可以的,也就是都能够让学生顺利地找到方程的解,进而解决实际问题。但运用四则运算各部分关系的思路实际上是用算术思路求未知数。这样的教学利用了学生已有的知识,因而易于理解,但是却不易与中学的教学衔接,也不易于学生更好地代数思维的形成。根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。不仅有利于加强中小学数学教学的衔接,而且有利于学生逻辑思维能力的发展,为今后学生更好地把握方程的实质奠定基础。总的来说,在小学阶段,只要达到能用方程表示简单情境中的等量关系(如 3x+2 = 5 , 2x-x = 3 ),了解方程的作用,了解等式的性质,能用等式的性质解简单的方程。并在这个过程中,了解等量关系、方程、等式与方程的解等与方程有关的常识,以及解简单方程的方法。对于方程作为刻画现实情境中数量关系,沟通已知数和未知数的一种数学模型提供了一些素材,留下了初步的印象;进而通过解方程求得未知数的值,对实际问题做出合理解答,初步领会方程的意义。 在教学这部分内容时,教师首先要把握好内容的定位,正确理解它的意义。不能仅仅把“方程”当作知识点,把“解方程”和“列方程解决问题”当作技能,仅为达成知识目标,心中要装着学生在数学学习中的长远发展,以不同的形式、在不同的年段为学生代数思维的建立创造空间,以丰富而有层次的活动帮助学生顺利地完成认识上的飞跃。总之就是教师的心中要装着“知识技能”、“数学思考”、“问题解决”和“情感态度”四维目标。 二、 在正、反比例教学中体现函数思想 在六年级的教学内容中正比例和反比例一直是一个重要的内容,这部分内容同样肩负了帮助学生完成一次认识上飞跃的重要任务。学生将从大量对“常量”的认识经验中逐步过渡到认识“变量”,这是函数思想渗透的重要契机。 1.正、反比例教学的目标 在课标中,对这部分内容的要求是: • 在实际情境中理解比及按比例分配的含义,并能解决简单的问题。 • 通过具体情境,认识成正比例的量和成反比例的量。 • 会根据给出的有正比例关系的数据在方格纸上画图,并会根据其中一个量的值估计另一个量的值。 • 能找出生活中成正比例和成反比例关系量的实例,并进行交流。 从“数与代数”内容的发展来看,本质上可以从两个角度理解:第一,从数的扩充角度,从常量到变量;第二,从关系的角度,从数量关系到等量、不等、变化关系。 2. 在教学中渗透函数思想 在有关正反比例的教学中,我们常说要渗透函数思想,但“函数”并不是小学的学习内容,那在小学学习正比例和反比例的价值是什么呢? 函数是一种具有普遍意义的数学模型,在分析和解决一些实际问题中有着广泛的应用。函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的数学概念之一,本标准在三个学段中均安排了与函数相关联的内容目标,希望学生能够逐渐加深对函数的理解。因此,教材对函数内容的编排应体现螺旋上升的原则,分阶段逐渐深化。 在第二学段中,引入正比例与反比例,它们 是一类常用的数量关系,这部分内容的学习是函数思想在小学的体现。 在现实中,有许多数量关系可以表示为成正比例的量和成反比例的量,其本质是两个量按一定的比例关系发生变化。 如果一个量增加(减少),另一个量按一定的比例增加(减少),两个量是成正比例的量;如果一个量增加(减少),另一个量按一定的比例减少(增加),两个量是成反比例的量、如果分别用 X 和 Y 表示两个量,前者可以表示成 Y=aX(a>0); 后者可以表示成 Y=a/X ,或 XY=a(a>0) 。 正比例和反比例的关系本质上是函数关系,小学阶段并不出现函数的概念,但要让学生感知两个量之间的关系。一是使学生对数量关系的认识和理解更加丰富,二是为第三学段进一步学习正比例函数和反比例函数,以及学习一般的函数知识做准备。教学中应与实际情境紧密联系,用学生可以理解的具体的方式呈现这些内容,引导学生从数量关系的角度,以及两个量之间变化的规律的角度来理解并掌握这个内容。 3.图像在正、反比例教学中的价值 学生对“正反比例”的学习,就是从简单的数量关系过渡到对“变化关系”的认识和学习。与以往的教材和教学要求相比,在方格纸上画图是个新的要求,教材中也出现了“正比例”及“反比例”的图像,它的价值是什么?教师该如何发挥好“图像”的作用,更好地体现和渗透函数思想呢? 下面结合具体的案例来回答这个问题。北京实验一小 郭雯砚 老师执教的《成正比例的量》,这节课上 郭 老师紧紧抓住了“图像”作为帮助学生认识和理解正比例的重要素材。 郭老师在学生根据表格、算式等熟悉的方式表示出正比例关系之后,教师地引出了“图像”,把它作为新朋友非常隆重介绍给了学生。让学生通过初步的猜想和分析,对图像有初步的感知,为后面深入而细致的探究奠定了基础。 的确,正比例教学是从常量数学到变量数学学习的启蒙阶段;图像教学能够直观地呈现两个变量之间的相依关系,使学生加深对正比例意义的理解。通过此课的教学,可以渗透函数思想,促进中小衔接,能够为学生今后的学习奠定基础。 因为学生有折线统计图的学习基础,描点连线对学生而言并不困难,可以自然地迁移。因此,在课堂上让学生认识正比例图像是有认知基础的。但同时也会存在困难,例如,该不该从 0 开始画呢?这个学生在学习正比例图像是普遍存在的问题,这个问题对于学生理解正比例有怎样的意义呢?让我们带着这个问题看看当时课堂上的情况吧。 可以看出,课堂上 虽然学生能画出图像,但他们大都是依据画折线统计图时的经验,这其实是错误的。在教学中, 郭 老师及时抓住了学生生成的问题,逐步进行深入的剖析,使学生明确这条直线是由无数个处在同一条直线上的点形成的。 从刚才的教学片段来看, 学生在探究的过程中,虽然会描点连线,甚至能找到变化规律,但是并没能够顺利地有在图像、表格和规律之间建立有机的联系。对于数学的认识还是比较孤立,比较静止的,缺乏运动的观点和变量的意识。这正是函数的核心所在,是引导学生深入理解正比例关系的要害所在,也正是发挥 “图像”作用的重要契机。课堂上,郭老师准确而巧妙地捕捉到了这一点,借助直观的课件,帮助学生进一步展开了分析,对图像的补充过程,恰恰是学生对正比例关系认识的完善过程。 函数有三种数学表示方法:表格、关系式和图像,这就是人们通常所说的函数的多重表示。多重表示的方法不仅可以加强概念的理解,也是解决问题的重要策略。图像对于理解变量之间的关系具有十分重要的意义,函数关系用图像来表示,以其直观性有着其他表示方式所不能替代的作用,它是“看见”两种量之间的关系和变化情况的途径之一。学生在现阶段学习正比例图像,是十分困难的,这是他们第一次接触函数图像。在学习的过程中,重在让学生认识图像,感受图像的作用、价值和美,为将来继续学习函数和图像做好心理准备。 看来在课堂上发挥好“图像”的作用,可以有效地帮助学生更加深入地理解概念,感受变化关系,悄然地就实现了对函数思想的感悟。这一观点,在郭老师设计的这节课后面的练习中仍有很好的体现。 这幅图像反应的是我们学校给住宿的同学买苹果的情况。给出数据和具体的情境。 给出数据后,你又能从图中发现哪些信息?( 12 千克苹果 48 元。) 你怎么看出来的? 生 1 :从横轴上找到 12 千克 ,向上找到直线上对应的点,再向左找到纵轴上的值。 生 2 :还能看出 40 元可以买 10 千克 苹果。 生 3 :还有每千克苹果 4 元。 学校又买来一些香蕉,哪个更贵呢? 学生觉得两幅图像分开画不太容易观察,利用电脑把两个图像合在一起。 这时,学生都认为香蕉更贵,表示香蕉购买情况的这条直线更陡一些。 为什么直线越陡,价格就越贵? 生 1 :同样的数量,比如都是 6 千克 ,从横轴上 6 千克 的位置向上看,香蕉的黄线在苹果的上面,说明香蕉的总价比苹果的多,所以香蕉更贵。 生 2 :同样的总价,比如都是 40 元,向右看可以买 10 千克 香蕉或 12 千克 苹果,买的苹果比香蕉多,所以香蕉比苹果贵。 如果还买了一些橙子,我们已经知道橙子的价格比苹果还贵,你觉得这条直线应该画在哪里? ( 画在香蕉的上面。 ) 由此可以看出,图像已经成为了学生分析变化关系,理解变化关系,呈现变化关系的重要工具了。的确,图像让抽象的变化关系变得直观,变得让学生有更容易有“感觉”了。 这是学生第一次接触函数图像,在此之前他们甚至都没有见过图像,不知道图像是什么样的。教师应在这部分内容的教学中,大胆地为学生设计猜想、探究、实验和验证的活动,让学生有机会将已有的旧知识与新形式建立联系,在图像的观察、绘制和分析中丰富对变化的认识,让零散的连起来,让静止的动起来,让具体数变得抽象起来,这个过程就是函数思想渗透的重要过程。 看来教学目标的达成离不开教师对数学核心概念有清晰的认识和准确的把握,这就需要教师对教学中每个内容有深入的分析,挖掘其背后的价值,为学生长远发展奠定重要的基础。 三、问题解决:从解题到建模 对于应用题教学,我们都熟悉它的结构、类型以及解题思路、方法等。新课标把“应用题”改为“解决问题”,现在又改为“问题解决”, 这不仅仅是名称上的变化, 更为重要的是使应用题教学的教育价值定位更加准确,教育理念更加明确,课程体系更加宽泛,呈现形式更加灵活。 现在的“问题解决”和计算教学紧密融合;也不再单独的安排一些单元,而是把问题解决贯穿到“数与代数”、“图形与几何”、“统计与概率”和“综合与应用”四个领域的学习中;问题解决的呈现方式有了新的拓展:文字、图表、图文并茂、多余信息等。教材的这些变化给教师的教学实践带来了新的挑战。 课标关于“问题解决”的总体目标: • 初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。 • 获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。 • 学会与他人合作交流。 • 初步形成评价与反思的意识。 具体到每一个学段,目标有是什么呢? 第一学段问题解决 1.能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试解决。 2.了解分析问题和解决问题的一些基本方法,知道同一个问题可以有不同的解决方法。 3.体验与他人合作交流解决问题的过程。 4.尝试回顾解决问题的过程 。 第二学段问题解决 1.尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决。 2.能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性。 3.经历与他人合作交流解决问题的过程,尝试解释自己的思考过程。 4.能回顾解决问题的过程,初步判断结果的合理性。 在(标准)提出的上述目标中,发展应用意识和形成解决问题的策略是重点。其中课标修订版一大变化就是“ 双能”变成“四能”:由原来的分析问题能力和解决问题能力,变成了四能:发现问题、提出问题、分析问题和解决问题能力。 提高学生解决问题的能力作为基本目标; 第二就是帮助学生形成一些基本的策略,通过求解问题获得更好的概念理解,包括促进学生的交流,并能积极地从事数学证明等; 第三就是帮助学生学会数学地思维。这也是问题解决的最高目标; 第四反思也必不可少的环节之一; 过去在小学教学中,教师们非常重视“应用题”的教学,目的是要通过培养学生运用数学知识来解决实际问题的能力。新课程改革以来,虽然应用题不再成为单元,反而是对解决问题能力的加强。 新的数学课程标准将问题解决作为一个重要目标,这是课程改革和发展的需要。 请吴老师说一说 问题解决与传统“应用题”的区别。 (一)问题解决与传统“应用题”的区别 1. 重视过程的教学:应用题更多的强调尽快获得答案;而问题解决是强调一个过程,就是寻求解决问题方式方法的过程。重视问题解决的过程,寻求问题解决的方法和策略比获得一个结论本身来的更重要。 2.不仅仅依附一个知识点:应用题往往是结合某一个具体的知识点,例如今天讲加法, 就是加法应用题,明天学乘法是乘法应用题,原来的应用题常常是依附在某一个知识点的背景下;而问题解决是强调针对具体的一个真实的情景,它更多的强调综合解决问题的过程。例如今天讲完加法后,问题解决的情景它可能不局限于用加法,也不局限于用减法,它要调动学生已有的知识来解决问题。它是不仅仅依附于某一个知识点的。 3.具体问题具体分析:应用题教学把应用题归成类,集中一类问题进行思考,强调速度和技巧;而问题解决强调的是具体问题具体分析,换句话说就是在一种新的情境中如何运用所学知识解决问题,使问题更具挑战性,可能一个问题跟着一个问题。它更具有挑战性,更具有新意。 4.问题的开放性和多元性:应用问题强调广泛性,即从生活中来、从儿童已有的经验出发、从现在的科技、社会发展的过程中发现问题和提炼问题。问题本身的开放性和多元性也是其很重要一个特征。 (二)解决生活情景具体与数量关系抽象之间的矛盾 数学问题解决,指的是按照一定的思维对策进行的一个思维过程,一步一步地接近目标,最终达到目标。也就是说,数学领域中的解决问题,不只是关心问题的结果,更重要的是关心求得结果的过程——探索、思考解决数学问题的过程,一般说来,是一个较为复杂。艰苦的历程。学生除需要运用抽象、归纳、类比。演绎等逻辑形式外,还需要运用直觉、灵感或顿悟等非逻辑形式。 问题解决的过程 要能够把握“问题解决”的问题,要准确迅速地把握问题的关键,揭示问题的本质属性,搞清问题的求解目标和已知条件、未知条件,是问题解决的第一步。 问题解决的第二步是设计求解计划,这要求大量的分析综合,尝试与猜测、类比与联想,问题解决的最后一步,就是对所得结果作检验和回顾。 小结:理解题意 ( 分析数量关系 )------ 求解作答——检验反思 在日常教学过程中,我们发现有些孩子自己读题就不会做,老师或家长给读完题后,就能顺利解题了。我感觉学生在做应用问题时最大的困难是读不懂题意。吴老师您能不能给我们说说怎样帮助学生读懂题? 对于解决问题,学生的困难,一是读懂题,二是分析数量关系。 1. 如何读懂题意 怎样是读题,我们可以采用如下方法: 一遍读,搞清楚是什么事;盘点数学信息,从题中获得哪些数学信息?(力求不遗漏) 二遍读,进行筛选,捕捉有用的数学信息,谁和谁有关系,有什么关系。(力求无偏差) 三遍读,告诉我们解决什么问题。让学生梳理“有用信息”及“目标问题”,进一步明确解题指向。这样只有我们读懂了题,才能更好地进行解决问题。 怎样帮助学生读懂题 ·手势理解。 ·情景再现。 ·边读题边记录。画批的方法,给思维以方向,给思维以范围。 ·抽象出问题的骨架,可以是画出图表示关系。 ·从数学的角度观察、思考,提取数量关系,提出并解答数学问题。 2. 分析数量关系 我们要重视对运算意义的教学。加、减、乘、除运算的意义是核心概念,要让学生积累原型,在什么时候用加、减、乘、除运算。 • 积累数学原型 加法可以作为合并、移入、增加、继续往前数等的模型; 减法可以作为剩余、比较、往回数、减少或加法逆运算等的模型; 乘法可以作为相等的数的和、面积计算、倍数、组合等的模型; 除法可以作为平均分配、比率或乘法逆运算等的模型。 除此之外,还要 在具体情境中,了解常见的数量关系:总价 = 单价×数量、路程 = 速度×时间,并能解决简单的实际问题。 注重对数量关系的分析。 在解决具体问题时,教师要鼓励学生通过实际操作、思考讨论,寻找问题中所隐含的数量关系,强调对问题实际意义和数学意义的真正理解。例如,教师要鼓励学生首先看懂问题情境,用自己的语言或者熟悉的符号表达问题情境和需要解决的问题;根据所求的问题和情境中的条件,运用图、表格等多种形式分析数量关系;回忆所算及其他内容的数学意义,将数量关系表达出来,这就是 关注题目的大逻辑 : 如:三年级植树 20 棵,六年级植树的棵树是三年级的 3 倍,三年级和六年级一共植树多少棵? 此题的大逻辑:三年级种的棵树+六年级种的棵树 = 总数 小桶装水 8 千克,大桶装水的质量比小桶多 5 千克, 4 个大桶可以装水多少千克? 此题的大逻辑:一个大桶的质量× 4= 总质量 还可以让学生画枝形图:从条件入手画枝形图,表示题中的数量关系,这就是用综合法来分析题中的信息。 也可以从结论入手画枝形图,表示题中的数量关系,这就是用分析法来诠释题中的数量之间的关系。 看来分析数量关系的方法:从条件入手、从问题入手这些分析方法该告诉学生还得告诉学生,那什么从问题解决情景中逐步抽象出模型呢? 从众多情景中抽象出模型 建立数学模型;向别人解释自己所列模型的实际意义。在学习了一段时间后,教师还可以鼓励学生自己总结一些数学模型的典型实例。 一辆客车 3 小时行 270 千米,照这样计算, 6 小时行多少千米? 3 瓶饮料花 27 元, 5 瓶这样的饮料花多少元? 王师傅 2 小时生成 18 个机器零件,照这样计算, 9 小时可以生产多少个机器零件? 这三道题全部是归一问题,传统的基于题型的训练也是建模;为什么这样说呢? 一是从众多例证中抽取共性的东西:都是先求单一量,这一步是中间问题,也是解决问题的关键所在;二是在选取素材时选取了基本的数量关系:如速度×时间 = 路程;单价×数量 = 总价;补充了工作效率×工作时间 = 工作总量。这就是建立模型的过程。 教学中也有一些老师经常问这样的问题:实际问题解决之后,用不用给学生总结归纳基本的数量关系:每份数×份数 = 总数,单价×数量 = 总价……似乎老师给总结了就有灌输的嫌疑。 其实,这些基本的数量关系在学生充分感悟的基础上,需要教师总结提炼,这也是抽象概括的过程。学生可以运用这几个基本的数量关系去解决其它类似的问题。当然不要过早地揭示,更不能强加给学生。 从模型出发引发新的问题情景 像“植树问题”在新课标教材中,不论哪个版本都有涉及。植树问题分三种情况: 第一种是两端种树,第二种是一端种树,第三种是两端都不种。 在四年级的一次调研测试时,有几道题目从不同角度诠释了植树问题: ( 1 )小明早晨去学校时,气温是零下 3 ℃, 中午休息时,气温是 5 ℃。那么气温上升了 ( ) ℃。 这是属于一端种树的问题,学生可以根据直观图数段数,也可以进行计算。 (2) 从 20 数到 50 ,两个两个地数,一共数( )次。 这是一年级学过的 100 以内数的数数问题,到了四年级呈现此题时,目的时让学生不断把学过的知识进行分类、归类和建构。这道题就是四年级学过的植树问题,两端都种的情况。 换成解决问题的题目:一条 30 米长的路,每 2 米栽 1 棵月季花,从头到尾一共栽多少棵?这就是模型思想。需要教学中经常变化情景,做到变中抓不变。 什么是“好”的问题? 对于教材编写和教学,一个首要的方面是提出“好”的问题。对于“好”的标准也许并不统一,这里只是谈一谈我们的思考。“好”的问题绝不等同于简单的练习,解决问题也决不能简单地理解为在一般的公式中对某个参数赋以具体的数值,也不能仅仅理解为会解决一些“人造”的问题。当然,知识的简单应用是必要的,但不能仅仅停留于此,而是应努力使学生经历从现实情境中“抽取”数学模型的数学化过程,以及把数学模型放到现实中加以使用的过程。 在内容上,它的内容更具有现实性,更贴近孩子生活实际,从形式方面新颖活泼,从单一的文字形式到了图文并茂的形式; 从思维价值上看更具有挑战性,让学生在解决这个问题的过程当中就获得了思维的发展,换一句话说就是要用数学本身的魅力来吸引学生; 从趣味性层面看要能够激发孩子的兴趣,激发学生学习欲望。 概括起来说,一个好问题具有以下四个特点: (1)具有较强的探究性(或创造精神) (2)具有一定的启发性和发展空间 (3)具有一定的开放性 (4)具有给定信息的现实性和简易性 四、教学中凸显问题解决的策略 问题解决活动的价值不只是获得具体问题的解,更多的是学生在问题解决过程中获得的发展。其中重要的一点在于使学生学习一些问题解决的基本策略,体验问题解决策略的多样性,并在此基础上形成自己解决问题的某些策略。 下面我们就来介绍几种常用的解题问题的策略。 1.画图的策略。 把画图作为一种解决问题的策略。由于孩子年龄的局限,他们对符号、运算性质的推理可能会发生一些困难,如果适时的。让孩子们自己在纸上涂一涂、画一画,可以拓展学生解决问题的思路,帮助他们找到解决问题的关键。因此我们认为,画图应该是孩子们掌握的一种基本的解决问题的策略。为什么说画图很重要呢?主要是比较直观,通过画图能够把一些抽象的数学问题具体化,把一些复杂的问题简单化。下面我们来介绍几种常用的画图的方法。 画图包括画线段图、 树图 、 集合图 、 示意图 除了刚才介绍的几种图以外,孩子们有的时候是没有任何框框的,他们根据自己的经验,自己的思维的特点,可能画出一些让我们老师意想不到的、他所明白的一些图。就是孩子们在解决问题的过程中,自己画的图。因此我们特别提出来,作为教师要尊重孩子们,特别是当孩子们的示意图画出来的时候,可能是非常的嫩稚的,可能是非常不成熟的,但是我们要很好地、认真地去挖掘他的思维价值,保护孩子们创造的积极性。 多样化方法的呈现,让学生的交流成为可能,实现了 “经历与他人交流各自算法的过程,并能表达自己的想法。” 这样的课程目标。 鼓励学生画图分析问题和解决问题,发展学生的画图意识。尤其是学生自己画的富有个性的示意图,是学生认知风格的具体体现。 画图,不仅让学生思维外显,而且让教师了解学生的思维水平,为学生间的相互交流提供了有力的支撑;画图在具体形象和抽象数量关系之间架起了桥梁。 2.列表尝试 列表的策略,有时候我们也叫列举信息的策略。在解决问题的过程当中,我们将问题的条件信息用表格的形式把它列举出来,往往能对表征问题和寻求问题解决的方法,起到事半功倍的效果。 尝试的策略,简单的说就是不知道该从哪开始的时候,可以先猜一猜来进行尝试。但是猜测的结果,应该是比较合理的,并且要把猜测的结果,放到问题中去进行调整。 多数情况下这两种策略同时使用。《鸡兔同笼》问题也是运用列表的方法,在尝试与调整中逐步逼近正确答案。 问题与策略之间不应该是一一对应的,解决同一个问题应该有多种策略,一种策略也应该能解决多种问题。 3.模拟操作。 模拟操作是通过探索性的动手操作活动,来模拟问题情境,从而获得问题解决的一种策略。学生是通过自己探索的过程,将需要解决的问题,转化为一个已知的问题来进行推导性的研究。通过这种开发性的操作的策略的训练,不仅能够使学生获得问题的解决,而且在这个过程当中,也能培养学生的创造性思维。 如:甲乙两地相距 360千米 客车和货车同时从甲开出。客车每小时行 60千米 ,货车每小时行 40千米 ,客车到达甲地后立刻返回,几小时与乙相遇? 用手势进行模拟;或动作模拟。学生明白做的路程是2个 360千米 ; 4. 逆推 逆推也叫还原,就是说从反面去思考,从问题的结果一步一步地反面去思考。在解决某一个问题的过程当中,当你从正面进行思考遇到了阻碍,碰到困难的时候,可以换个思路从相反的方向,即从问题的结果一步一步的往前推。 小结解决问题的策略: “列表”; “ 假设” ;“猜想尝试”; “模拟操作”;“画图”; “逆推”;“简化”等都是学生常用的解决问题的策略。 问题解决的建议: 1.理解运算意义的基础上,学会分析数量关系。 2.注重恰当选择解决问题的策略。 3.鼓励学生主动发现问题提出问题的意识,提高学生问题解决的能力。 4.反思问题解决的过程及策略,逐步形成评价与反思的意识。 5. 尝试用方程的方法解决实际问题。 义务教育阶段,通过解决问题,更重要的是培养学生应用数学的意识和数学思考与交流的能力,而不是将学生培养成解决问题的专家。特别是要使学生认识到数学本身是有用的,促使他们碰到问题能想一想是否可以用数学来解决。 在这样的思想指导下的应用问题的教与学 , 学生学会了真正意义上的 “ 具体问题具体分析 ”, 学会了如何利用各种手段收集和处理问题中隐含的信息,学会了如何从问题中发现隐含的数量关系,学会了如何从多个角度思考问题,因而也就学会了“举一反三”,获得了初步分析问题、解决问题的能力。 | ||
小学数学统计与概率 一、数据分析观念的内涵 1. 在实验稿《课标》中“统计观念”是核心概念,现在为什么改名为“数据分析观念” 呢? 在《不列颠百科全书》中关于统计学是这样定义:统计学是关于收集和分析数据的科学和艺术。 的确,统计学的一个研究对象是数据,它是通过收集数据,以及对数据的分析来帮我们解决问题的。 在义务教育阶段 我们 处理的数据都是有实际背景的,正如课表组组长 史宁中 教授所述:“数据是信息的载体,这个载体包括数,也包括言语、信号、图像,凡是能够承载事物信息的东西都构成数据,而统计学就是通过这些载体来提取信息进行分析的科学和艺术。” 可见,统计学的一个核心是数据分析,实验稿中叫统计观念,现在叫数据分析观念,这两点并没有本质性的不同,而是用这样的语言更加点出了统计的核心就是数据分析让人一目了然。 2. 数据分析观念的内涵 在课标当中,对于数据分析观念,有这样的描述:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息; 了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面说明只要有足够的数据就可能从中发现规律。数据分析是统计的核心。 3. 如何发展学生的 “ 数据分析观念 ” ? 第一,就是让学生去经历这个数据分析的过程,体会数据中蕴含的信息。 例如,清华附属小学 安华 老师执教的一年级《统计》。 安 老师为学生提供了四部动画片,选出大家最喜欢看的一部进行播放。学生的想法各不相同,这可怎么办呢?老师启发学生自己去想办法,让学生感悟到我们是为了解决问题而来做统计的。统计什么?怎样统计呢?学生自始至终都在思考中,他们最先想到举手表决,却没有准确统计出结果,然后又继续想办法,有的学生说站起来这样数的更清楚了,还有说在小组内去统计,然后我们再汇总,最后大家都统一到用投票表决的方法来统计。当数据统计上来以后,如何让学生体会数据中蕴含的信息呢? 安 老师让学生利用数据来推断,看哪部动画片,要用数据来说话。恰巧当时这个班正好有一个孩子是请假没来,老师提出问题:如果这名同学也来投票表决,还是去看“多啦 A 梦”吗?学生根据数据利用简单推理也做出了判断。 第二,鼓励学生掌握数据分析的方法,根据问题的背景能选择合适的方法。 例如,体育课上 11 名男同学 100 米 跑的成绩: 13 秒 2 17 秒 13 秒 5 15 秒 8 12 秒 17 秒 1 16 秒 7 15 秒 6 17 秒 16 秒 6 16 秒 7 。 平均数: 15 秒 6 ,中位数: 16 秒 6 (1)如果选择参加一项比赛,希望有一半的男同学可以参加,选择哪个成绩作为标准? (2)如果希望确定一个较高的标准,选择哪个成绩作为标准?(答案不唯一) (3)如果要确定一个标准,你如何确定?为什么? 第三,通过数据分析,让学生感受数据的随机性。 史宁中说:“统计与概率领域的教学重点是发展学生的数据分析意识,培养学生的随机观念,难点在于,如何创设恰当的活动,体现随机性以及数据获得、分析、处理进而作出决策的全过程。” 例如:上学时间。 学生记录自己在一个星期内每天上学途中所需要的时间,如果把记录时间精确到分,可能学生每天上学途中需要的时间是不一样的,可以让学生感悟数据的随机性;更进一步,让学生感悟虽然数据是随机的,但数据较多时具有某种稳定性,可以从中得到很多信息,比如,通过一个星期的调查可以知道“大概”需要多少时间。 为什么我们要在统计概率教学中,把数据分析观念作为一个核心概念呢?可以从标准解读中对核心概念的价值进行分析。 在标准解读中,提出了四个方面的价值。第一,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面 ( 教育价值 ) ;第二,核心概念往往是一类课程内容的核心或聚焦点,它有利于我们把握课程内容的线索和层次,抓住教学中的关键;第三,核心概念本质上体现的是数学的基本思想;第四,这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,并通过教师的教学予以落实。 二、统计与概率的内容变化及主线分析 (一)新课标中关于“统计与概率”的内容标准 1. 《标准》中有关“统计与概率”的内容标准 2. 分析调整原因 “统计与概率”内容结构做了较大调整,使三个学段内容学习的层次性更加明确。强调培养数据分析观念,与学生的现实生活联系得更加紧密。内容结构上,三个学段有较大的差别。第一学段内容大减少,只保留 3 条要求。主要是学会分类、会进行简单的数据搜集与整理的;第二学段分为“简单数据统计过程”和“随机现象发生的可能性”两部分,共 8 条;第三学段分为“抽样与数据分析”和“事件的概率两部分”,共 11 条。这样调整的原因在于,在实验过程中原来第一学段对于统计与概率内容的要求,按照学生现有的理解水平,学习有一定困难,教学设计与实施有很大难度。同时,在内容上与后面两个学段有很大的重复。因此,较大幅度降低了第一学段统计与概率内容的要求,对后两个学段的内容也做相关的调整,如中位数、众数等内容从第二学段移到第三学段。这样使统计与概率内容在三个学段的要求上有明显区分,在难度上也表现一定的梯度。 (二)统计与概率的内容主线 统计与概率的内容主线,主要包括四方面的内容,第一是数据分析过程;第二是数据分析方法;第三是数据的随机性;第四是随机现象及简单事件发生的概率。这四条主线很重要,我们常说教知识不仅仅要教给学生一颗一颗的珍珠,还需要把这些珍珠串成一条一条美丽的项链,显然主线就是串这个项链非常重要的方面。 我们可以看到课标每个学段的第一句话,都是提出了有关过程的要求,显然就成为了统计学习的最主要或者最首要的一个主线,《标准》在三个阶段都提出了相应的要求:在第一学段中,提出“经历简单的数据收集和整理过程”;在第二学段中,提出“经历简单的收集、整理、描述和分析数据的过程(可使用计算器)”。在第三学段中,提出“经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据”。 从三个学段的要求不难看到,首先过程都是重要的,第二数据分析的过程可以包括收集、整理、描述和分析,另外随着年龄的差别,在要求上会有所差别,第一学段经历简单就可以了,到第二学段稍微要把描述分析数据提出来是这样一个过程,为了使大家对这个过程,再加深理解,我们下面列举标准中的一个案例,来说明这个过程。 第一学段(《标准》例 19 ):对全班同学的身高进行调查分析。 从以下的数据中可以得到哪些信息呢? 第 1 小组 116 128 124 135 128 141 第 2 小组 129 130 134 127 134 138 第 3 小组 138 142 119 123 127 146 第 4 小组 119 137 136 138 150 152 第 5 小组 125 120 131 143 135 148 第 6 小组 138 132 147 139 148 139 [ 说明 ] 学校一般每年都要测量学生的身高,这为学习统计提供了很好的数据资源,因此这个问题可以贯穿第一学段和第二学段,根据不同学段的学生特点,要求可以有所不同。希望学生把每年测量身高的数据都保留下来,养成保存资料的习惯。在第一学段,主要让学生感悟可以从数据中得到一些信息。教学中可以作如下设计: ( 1 )指导学生将全班同学的身高进行汇总。 ( 2 )从汇总后的数据中发现信息。比如,最高(最大值)、最矮(最小值)、相差多少(极差),大部分同学的身高是多少(众数)等。在讨论过程中,括号中的有些名词并不需要出现,但是希望学生体会数据所代表的意义。 ( 3 )在整理中,可以让学生尝试创造灵活的方法。例如,寻找最高,可以直接比较寻找,当学生人数比较多时,也可以分组寻找组内最高,然后在每组的最高中寻找最高;在考虑顺序问题时,学生可能会有不同的排序方法。例如,先找到最小(大)的,然后在剩余的数中再找到最小(大)的,依次将这些数按从小(大)到大(小)的顺序进行排序;或者先固定一个数,拿第二个数与之比较,然后取第三个数与前两个数比较,根据它们之间的大小关系决定位置,这样继续下去,最后将这些数排序。无论学生的出发点如何,只要思路清晰、排序正确即可。 第二学段(《标准》例 38 ): 对全班同学的身高的数据进行整理和分析。 [ 说明 ] 在上面的例子中,已经引导学生对全班同学的身高的数据进行初步分析。在这个学段中,要求学生结合以前积累的身高数据,进行进一步的整理,然后进行分析。整理的目的是为了便于分析,例如,条形统计图有利于直观了解不同高度段的学生数及其差异;扇形统计图有利于直观了解不同高度段的学生占全班学生的比例及其差异;折线统计图有利于直观了解几年来学生身高变化的情况,预测未来身高变化趋势。学生还可以讨论用什么数据来代表全班同学的身高,自己的身高在全班的什么位置。 教学设计时,可以关注如下要点: ( 1 )组织学生讨论并明确画统计图的基本标准。如果学生意见不一致,可以根据意见的不同把学生分组,各自画出统计图后进行比较。 ( 2 )可以把几年来全班同学平均身高的数据画出折线统计图,让学生与自己身高数据的折线图进行分析比较。还可以对男女生的身高数据进行分析和比较。 ( 3 )组织学生讨论用什么数据来代表全班同学的身高,自己的身高在全班的什么位置。学生可以用平均身高作为代表,用自己的身高与平均身高进行比较;可以用出现次数最多的身高作为代表(“众数”的意义),用自己的身高与其相比;也可以用班级中等水平学生的身高作为代表(“中位数”的意义),用自己的身高与其相比。学生只要能说出自己的理由就可以,不需要出现“众数”“中位数”等名词(只要求教师理解,不要求给学生讲解)。 ( 4 )虽然数据整理和分析的方法可以有所不同,但要求分析的结论清晰,能够更好地反映实际背景。 第三学段: 比较自己班级与别的班级同学的身高状况。 [ 说明 ] 对于两个班级学生身高状况比较,通常可以通过平均值来判断,但有时候仅仅通过平均数是不够的,如果一个班同学之间身高差异很大,而另一个班同学之间身高差异很小,即使前一个班的平均高一些,也不能说这个班的整体状况很好。因此,在判断身高状况时,不仅要看平均值,还需要参考方差。 同样的一个内容,在不同的年级可以有不同的要求,第一学段,要求的难度,就是在提取信息的数量上,要求并不是非常的高,关键是让他意识到,感悟到数据是信息,那么到了第二学段,显得这个要求又有所变化了,总之要让学生经历数据的收集、整理、描述、分析的过程,要亲自参与其中。 三、数据分析的方法 1.收集数据的方法 在收集数据的方法中我们要把握这么几点:第一点就是我们所涉及的数据,可能是全体数据,或者我们说总体数据,也可能是通过抽样获得的数据,抽样数据,在小学阶段,学生收集的基本上都是总体数据。 第二个就是数据的来源,实际上是有两种,一种就是阅读别人现成的数据,比如说报刊资料上等等的数据,还有一点就是需要自己的调查的数据,对于小学来说除了要看别人的数据非常重要,也要自己要做一些调查数据,在这方面很多老师都有非常好的经验和设计好的例子,比如我看到一些课堂中,老师们引入了让一年级的孩子来统计换乳牙的情况,或者让有些同学来统计看电视的时间等等,值得注意的是如果我们让学生去收集自己调查的数据,一定要教给他们一些方法,比如说我曾看到,有的学生并不知道什么叫乳牙,他也不知道看电视的时间应该怎么统计,所以这样以来呢,报出来的数据就不够真实,是比影响统计的效果,那我们可以安排一些活动,让学生在老师的指导下,或者在家长的帮助下,让他来去调查,这样会更好。 常用的收集数据的方法包括这么几方面:调查的方法、实验的方法、测量的方法、查阅资料的方法等等。总而言之,学生应该对收集数据的方法有一个比较丰富的体验,《课标》无论在第一学段还是第二学段都提出了这样的要求,比如说在第一学段课标是这样说的,要了解一些调查、测量等收集数据的简单方法。那么有的老师说这两个好像也没有太大区别,其实严格意义上都是学生自己去做,当然我们可以这么理解,调查就是学生去问问自己的同伴,那么测量呢,比如说我们可以量量这个课桌有多长,我们量量我们班的课桌大体上都是多长,包括我们在前面举过的上学时间都可以理解是测量。在第二学段,显然又进了一步,要求学生能够自己来设计简单的调查表,这跟第一学段相比有进一步的提高,而且能够选择适当的方法了,就不仅仅是了解了,在选择方法中包括了我们说的调查,可以做一些测量,还可以做一些试验,比如说我们原来肯定做过的物理试验,或者说呢有的课上这样让学生做试验,反弹高度,就不同高度抛一个球,肯定起始高度越高,反弹高度一般情况下都会高,那么到底是什么关系呢,这时候通过试验来获取一些数据。这三点都是学生能够自己获得的。当然我们也要让学生了解现成的数据,也就是从报刊、杂质、电视等等媒体中呢,有意识的获得一些数据,那么总而言之应该对收集数据的方法有比较丰富的体验。 2.整理、描述、分析数据的方法 当人们收集了一堆数据以后,这些数据往往看起来比较杂乱,这就需要来整理数据,在不损失信息的前提下,对看起来杂乱无章的数据进行必要的归纳和整理,然后把整理后的数据运用统计图表等直观地表示出来,并加以适当的分析,为人们作出决策和推断提供依据。 常用的收集数据方法包括调查、试验、测量、查阅资料等。学生应该对收集数据的方法都有比较丰富的体验。为此,《标准》在第一学段提出“了解调查、测量等收集数据的简单方法”;在第二学段提出“会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据”“能从报纸杂志、电视等媒体中,有意识地获得一些数据信息”。 在第二学段,学生将学习条形统计图、扇形统计图、折线统计图等常见的统计图,并且能用它们直观、有效地表示数据。第二学段还将学习一个重要的刻画数据集中趋势的统计量——平均数。 统计图可以很直观反应数据,学生对统计图中数据的分析以及预测都是数据分析观念的重要体现。对于统计图的学习,提出几点需要注意的:第一,不要急于引入正规统计图的学习,在第一学段《标准》要求鼓励学生用自己的方式来描述数据。第二,在描述数据的过程中,使学生不断体会各种统计图的特点,能根据实际问题选择合适的统计图来描述数据。第三,鼓励学生读懂媒体中的一些统计图表。第四,鼓励学生从统计图中获取尽可能地有用信息。 这个问题也是大家普遍困惑的,到底引导学生从哪些方面来“读图”呢? Curcio (1987 ) 把学生对统计图的认识分为三个水平:( 1 )数据本身的读取( reading the data ),包括用能够得到的信息来回答具体的问题,这些问题图表中有明显的答案。 (2) 数据之间的读取( reading between the data )。这包括做比较 ( 例如比较好、最好,最高、最小等 ) 和对数据进行操作 ( 例如加减乘除 ) 。 (3) 超越数据本身的读取( reading beyond the data ),包括通过数据来进行推断预测推理,并回答具体的问题。 在实际教学中,教师已经开始重视鼓励学生尝试由信息来进行预测。但是,在教学中还存在了一些误区。比如,曾经有过这样的案例:如图 2 ,教师鼓励学生根据某女生出生到 12 岁的身高,由此去预测这个学生 15 岁的身高(图 2 到图 7 中纵轴的身高单位为厘米)。 有的学生(虽然是很少数)脱离了数据去进行“预测”:“我觉得她应该能长到 190 厘米 ,因为我希望她去打篮球”。就是基于数据,学生也有五花八门的答案,有的说:“ 8 岁到 10 岁长了 10 厘米 , 10 岁到 12 岁长了 24 厘米 ,照这个趋势 12 到 14 岁要长 30 多厘米,我估计她到 15 岁要到 2 米 了”;有的说:“ 8 岁到 10 岁长了 10 厘米 , 10 岁到 12 岁长了 24 厘米 , 12 岁到 14 岁又会回到长 10 厘米 ,我估计她到 15 岁快到 180 厘米 ”;还有的说:“到 12 岁就不怎么长了,我估计她到 15 岁差不多 170 厘米 。”面对五花八门的答案,教师也觉得都有道理,不知如何引导。 这里需要注意两点。第一,预测需要基于数据。对于脱离数据进行“预测”的学生,要引导他用数据说话,虽然这个预测也有可能,但可能性不会大;第二,有时候为了更合理地预测,需要我们收集更多的数据。教师可以引导学生思考:几个学生的想法都有道理,但是要比较合理地预测,还需要我们掌握更多的信息,比如,可以收集曾经和她差不多情况的人 15 岁的身高来帮助预测;或者把她与当地女生平均身高进行对比,看看 12 岁与平均身高的对比情况,由此预测 15 岁与平均身高的对比情况。当然,无论哪种预测都不能肯定是正确的,但会比单纯依靠这个学生以前的情况进行预测要合理。进一步,如果条件允许的话,还可以鼓励学生实际去做。在这样的思考下,一位老师做了如下的设计:根据统计图来进行“三次”预测。 第一次,教师呈现小婷(女生)出生到 12 岁的身高数据(如图 2 ),鼓励学生预测她 15 岁的身高。和前面叙述的一样,学生基于这个数据给出了不同答案。 教师没有就此结束,而是给出了小婷 15 岁的身高,引起学生的反思:“实际上,小婷今年已经 15 岁了,她的身高是 168 厘米 ”,并得到图 3 。 在此基础上再鼓励学生预测小婷 18 岁的身高。学生发现小婷 12 — 15 岁增长的幅度不大,由此推断 15 — 18 岁增长的幅度也会不大。那么是这样吗?有的学生提出可以找一些和小婷情况差不多的女孩,看看她们 18 岁时的身高。根据学生的想法,教师呈现了如下三个女生的身高(如图 4 ,图 5 ,图 6 )鼓励学生进行第二次预测。 学生发现虽然她们的身高具体数值不同,但 15 — 18 岁变化趋势却比较一致,增长的幅度都不大,由此可以预测小婷到 18 岁很可能只比 15 岁时增长 2 厘米 左右,即她 18 岁的身高在 170 厘米 左右。还有的同学发现小婷的身高值与图 6 所表示的女生比较接近,并且比这个女生略矮一些,由此根据这个女生 18 岁 171 厘米 预测小婷 170 厘米 。进一步,有的学生提出只有这三个女生的数据是否太少了,不说明一般情况,还可以收集更多的数据。于是,教师给出了北京城市女生平均身高统计图(如图 7 ),鼓励学生进行第三次预测。 学生发现这组数据也有这个趋势: 15 到 18 岁的身高增长的不多,由此预测小婷的身高是 170 厘米 左右。有的学生则根据 15 岁时小婷的身高比平均身高多 6 厘米 ,由此估计小婷 18 岁时也要多 6 厘米 ,所以是 169 厘米 左右。当然,这些预测也并不能保证一定正确。 以上“三次预测”的案例是鼓励学生从数据中获取合理信息的有益尝试,在实践中我们还需要更多的案例,以及如何鼓励学生有效获取信息的策略,这也构成了需要进一步研究的问题。教学中应鼓励学生运用所学习的方法,尽可能多地从数据中提取有用的数据,并且能够根据问题的背景选择合适的方法,而不是单纯地名词、计算方法等的掌握。需要我们根据问题的背景选择合适的统计图。 总之,“统计学对结果的判断标准是‘好坏'”,而不是“对错”。 3.关于统计教学的几点建议 (1)发展学生的应用意识,感受统计的价值。 (2)教师要重视统计,并把发展学生的数据分析观念的培养作为重要的教学目标。 (3)切忌将统计的学习处理成单纯数字计算和绘图技能。 四、数据的随机性及简单随机事件发生的可能性 1.数据随机性的内涵 数据的随机性主要有两层涵义:一方面对于同样的事情每次收集到的数据可能会是不同的;另一方面只要有足够的数据就可能从中发现规律。 老师们存在这样的困惑:概率也是研究随机现象的,那么为什么又提出数据的随机性呢? 对于这个问题, 史宁中 教授这样回答:我听了一些课,老师们经常这样处理:比如对于掷一枚均匀的硬币,先得到出现正面或反面的概率是 1/2 ,然后让学生通过反复掷硬币去验证这个结果。这里有两个问题。第一,一个硬币,先假定它出现正面和反面的可能性是 1/2 ,这是数学(或者称为概率)。这个 1/2 是通过概率的定义得到的,不是依靠掷硬币验证出来的。实际上,学生做了很多次实验也得不到 1/2 ,反而更加糊涂了。第二,运用定义的方式教学随机,不能很好的培养学生的随机观念。需要指出的是,我们赞成做实验,赞成运用统计的思想来做实验。统计是通过数据来获取一些信息,来帮助人们做出一些判断。同样是掷硬币的问题,在统计上就会这样设计实验:先让学生多次掷硬币,计算出现正面的比例(频率),然后用频率来估计一下出现正面的可能性是多大。如果这个可能性接近 1/2 的话,就推断这个硬币大概是均匀的,这是统计的思想。 2.合理设计实验,体会数据的随机性 《标准》中提出了“体会数据随机”的想法,如何在课堂中设计合理的实验落实“体会数据随机”的目的呢?一个好的切入点是对目前课堂教学中的实验加以分析,看看哪些实验的设计是合理的,哪些还需要进一步的思考和改进。 第一类:“验证”类 下面是一个五年级的课堂教学片段: 老师拿出一个盒子,盒子里有 9 个白球、 1 个黄球。如果从中任意摸出 1 个球,可能是什么颜色的球 ? 摸到白球的可能性有多大,黄球呢? ( 学生略做思考后交流。 ) 生 1 :可能摸到白球,也可能是黄球。 生 2 :摸到白球的可能性是 9/10 ,因为有 10 个球,其中 9 个是白球。 (大家都表示同意) 师 : 好,下面就请你们分小组摸球,记录摸球的结果,验证一下大家的想法。 本活动的目的是验证摸到白球的概率是否为 9/10 ,如前所述是不提倡的。因为学生完全可以通过分析推理得到摸到白球的概率,他们产生不了做实验的需求。如果做了实验,摸到白球的频率往往不是 9/10 ,学生反而产生困惑,当然也体会不到数据的作用了。 第二类:“体会随机”类 看下面的一个二年级的课堂教学片段: 组织小组活动:盒子里有 3 个黄球、 3 个白球。每次摸出 1 个,摸之前先猜猜你会摸到什么颜色的球 ? 每次你都猜对了么 ? 活动结束时,老师询问 : 有没有每次都猜对的同学 ?( 全班只有 2 人举手。 ) 师 : 为什么我们那么多的同学都没有猜对呢 ? ( 此时,两个猜对的同学急于向大家介绍方法。 ) 生 1: 黄球和白球摸在手里的感觉不一样 ! 师 :( 饶有兴趣地 ) 真的吗 ? 让我们见识一下 ! 生 1:( 摸出一球,没看前猜测 ) 黄色 ! ( 拿出后是白色,生 1 低头坐了下去。 ) 师 : 怎么不试了 ? 生 1 :没有信心了。 师 : 怎么就没有信心了 ? 生 1: 摸在手里分辨不出来 . 生 2: 我发现了,如果第一次摸出来的是黄球,第二次就猜是白球,是交错出现的。 师 : 你刚才就是这样猜的,结果都对了吗 ? 生 2 连连点头。 师 ( 半信半疑地 ) :还有这个规律 ? 摸 1 个 ! ( 生 2 摸出 1 个白球,放回。 ) 生 2: 第二次一定是黄球。 ( 第二次生 2 果真摸出一个黄球。 ) 师:看来,下次…… 生 2: 第三次该是白球了 ! ( 第三次生 2 摸出个黄球。 ) 师 : 这个规律还成立么 ? 学生们直摇头。 师:通过刚才的摸球游戏,你发现了什么 ? 生 : 盒子里又有黄球又有白球,摸出一个球,可能是黄球,也可能是白球 . 这个案例乍一看和上面的案例一样,都是摸球,但仔细分析目的是不一样的。这个实验的目的是使学生体会不确定性,即事先无法确定实验的结果。其实,学生对于不确定性的认识并不是一帆风顺的,学生们总是希望找到“确定”的结论。有的学生认为可以凭手感判断段结果,有的学生把球放在固定的地方从而“破坏”随机,有趣的是还有的学生通过几个数据的黄白相间规律就去推断整体是这样的。学生出现这些想法是正常,逐渐消除学生存在的误解正是教学的目标之一。而最好的办法就是让学生亲自实验,案例中教师正是运用了这一策略。 第三类:“推断”类 上面已经举过这样的例子,对于这样的活动是在课程标准修订中大力提倡的,即通过数据来进行推断。 我给大家准备了两种骰子,一种是均匀的,另一种是不均匀的,但不知道 哪种是均匀的,哪种是不均匀的。 1 、 2 、 3 组是一种骰子, 4 、 5 、 6 组是一种骰子。每个小组至少抛 15 次,记录下分别是几点,然后我们统计 “1” 点和 “6” 点的次数。( 1 、 2 、 3 组 “1” 点 28 次, “6” 点 33 次; 4 、 5 、 6 组 “1” 点 40 次, “6” 点 27 次) 生: 1 、 2 、 3 组的骰子是均匀的, 4 、 5 、 6 组的骰子是不均匀的。 师:他的结论你们同意吗? 28 和 33 也不一样啊? 生:差距比较小。 师: 4 、 5 、 6 组呢? 差距大。 师:我们就做出推断, 4 、 5 、 6 组的骰子可能是不均匀的。想知道谜底吗? 第四类:“运用频率估计概率”类 有的教师在课堂中创设了如下的情境:父亲和儿子决定谁去看奥运会男篮决赛。但是,与过去教学不同,使用决定是否去的工具并不是硬币,而是啤酒瓶盖。 师:举世瞩目的北京奥运会地、无与伦比地结束了。去过北京,现场看奥运会的请举手。没有人,的确,就是北京当地的人也买不到奥运会的门票。我有一位朋友,知道我当年是学校篮球队的队长,就专门帮我找了一张男子篮球决赛的门票。(出示篮球票)只有一张。我儿子也是个篮球迷。孔子说:“己所不欲,勿施于人”。怎么办呢?饭桌上,我和儿子商量。我儿子看到桌子上有一个啤酒瓶盖,就说:“爸爸,我们抛啤酒瓶盖吧。如果正面朝上就我去,如果反面朝上就您去。”我说:“儿子,什么是正面朝上?什么是反面朝上?”(出示瓶盖正、反面图片,并标注“正——儿子、反——爸爸”)你们想一想,(板书:问题)这个办法好不好?认为好的举手。 (学生纷纷举手表示认可。) 师:为什么好?谁能说一下,你是怎么想的? 生 1 :我觉得是靠命运决定的,所以公平。 生 2 :我认为是公平的,因为儿子的机遇是二分之一,爸爸的机遇也是二分之一。 师:二分之一,就是这个瓶盖抛起来的时候,可能是正面朝上,也可能是反面朝上,只有两种可能,(板书:可能性)并且抛一次的话,一定会有一面朝上。所以说这是公平的。有没有不同的想法? 生 3 :我认为在现实生活中会有所争议,因为啤酒瓶盖打开过,会有一定的折痕,会影响最终的公平性。 师:你想的很好,不过我们选的啤酒瓶盖如果就是平的,好像就没问题了。用抛啤酒瓶盖的办法,刚才大家都说好了。现在在他的启发下,有没有人认为不好? 生 4 :我认为瓶子盖的反面那一圈是折起来的,这一面的重量会比正面的重量大,所以爸爸胜的可能性比较大。 师:能用“可能性”这个词很好。同意这个观点的人请举手。 部分同学同意。 师:小结,看来现在有两种意见了。 生 3 一直坚持举手,最终获得发言机会:我认为,瓶盖上的锯齿也会影响比赛的结果。 师:经过刚才的讨论,我们发现问题(指板书:问题),用抛啤酒瓶盖的办法来决定谁去看比赛,究竟公平不公平呢?答案不一致。怎么办呢? 生 4 :做个实验呗。看一下到底有没有问题。 师:非常好!做个实验来看一看到底公平不公平。(板书:实验)有这样的想法非常好。实践是检验真理的唯一标准。 通过这个例子我们可以看到:当 华 老师问这个方法行不行时,因为孩子没有这方面的经验,所以很多孩子都认为公平,但有一个孩子认为不公平,但是他正好得了一个相反的结论,他觉得既然儿子决定的,肯定对儿子有利,所以这个正面朝上的可能性大,其实正好是错误的,这个时候,我们到底哪个可能性大?这个概率谁大呢?显然我们这个时候做实验就显得非常的重要,孩子也说咱们试一试吧,通过试一试学生发现,其实反面朝上的可能性大,当然我们再配合一些解释。最后揭晓儿子看起来好像是想自己去,实际上他是是为了让他爸爸能够去,选择了这样一个事情,因为他爸爸是个球迷,很有意思。这个类实际上跟我们第五类,体会频率与概率的关系,是密切相关的。因为正是因为频率和概率有关系,就是我们说的,大量重复实验的时候,频率会稳定在概率,所以我做的实验次数比较多的时候,我用频率去估计概率。 3.随机现象发生的可能性 在本次《课标》的修改中,学生在第一学段将不再学习概率,主要考虑在基础教育阶段统计的重要性是大于概率的,发展学生的数据分析观念是这部分内容的核心。即使对于随机的学习,如前所述,《标准》中也提出运用数据分析来体会随机性。 第二学段《标准》安排了概率的学习,根据学生的年龄特点,称为“随机现象发生的可能性”。有两个方面的要求:在具体情境中,感受简单随机现象的事例,能列出简单的随机现象中所有可能发生的结果。通过实验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并能进行交流。 综上所述,我们利用这四个话题,把课程标准中有关统计概率这部分的要求跟大家进行沟通。一是抓住核心概念数据分析观念,第二,就是注意我们四条主线,一个是统计的过程,一个是数据统计的方法,一个数据的随机性,一个是简单随机性发生可能性,前三个主要是统计,后面是概率。那么第三点,就是我们知道统计概率有一些变化,是需要我们不断的来一块来理解,一块来建设,我们还有很多值得研究的问题,还有很多很好的资源需要我们共同积累。 | ||
专题讲座 小学数学图形与几何 话题一 吴正宪(北京教育科学研究院) 王彦伟(北京东城区教师研修中心) 张 杰(北京东城区教育研修学院) 2011 版课标终于要公布了,新课标 修订后有哪些变化。这一讲主要讲“图形与几何”这个领域的变化。 新课标在图形与几何领域有几个核心概念。主要有 空间观念、 几何直观、 推理能力 等 。 空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。 更直观的理解如下图: 几何直观主要是指利用图形的描述和分析问题,借助几何直观可以把复杂的数学问题,变得简明形象,有助于探索解决问题的思路,预测结果,探索思路预测结果。 案例:《打电话》 如果你是老师,有件紧急的事情要通知给同学,用打电话的方式,每分钟通知 1 人,给你 3 分钟的时间,能使多少人收到通知?大胆的猜测一下。 下面是学生借助图形研究的例子。这些学生都能够利用线段、点以图形的形式,来描述打电话来通知这件事情,设计方案。 通过这个数图就把这个复杂的数量关系,很简明很直观的呈现出来,而且从这个图本身,就能发现一些规律,就是一分钟通知一个人,第二次通知的新的人数,就是第一次的两倍,否则你算是算不出来,看图就看出来了。 通过线段、点,以及图形,把通知过程很简捷的表现出来,把它们之间的关系,揭示得非常清楚,这就属于典型的几何直观,就是图形直观。 推理能力 的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。 通过对一线教师的访谈,查阅资料,把老师们的困惑集中起来,归结为四个大话题。 讨论话题: 1.如何在观察、操作中“认识图形” 抽象出图形特征,发展空间观念? 2.如何以“图形的测量”为载体,渗透度量意识,体会测量的意义,认识度量单位及其实际意义,了解掌握测量的基本方法,并在具体问题中进行恰当的估测?从而发展 学生的空间观念与推理能力? 3.如何通过“图形的运动”探索发现,体会研究图形性质的不同方法,发展学生几何直观能力和空间观念,提高学生研究图形性质的兴趣? 4.如何通过学习“确定图形位置”的方法,发展学生的空间观念和推理能力? 话题一、图形的认识——抽象图形特征,发展空间观念 问题一、新的课程标准在图形的认识方面有哪些变化?有哪些新的要求呢? 这次新课标修订后图形的认识部分都包括哪些内容?有什么新的变化? 课标修订前后立体图形的认识部分内容的对比:
| 修订前 | 修订后 |
第一 学段 | ( 1 )通过实物和模型辨认长方体、正方体、圆柱和球等 立体图形 。 ( 2 ) 辨认从正面、侧面、上面观察到的简单物体的形状。 [参见例 1 ] ( 3 )辨认长方形、正方形、三角形、平行四边形、圆等简单图形。 ( 4 )通过观察、操作, 能用自己的语言描述 长方形、正方形的特征。 ( 5 )会用长方形、正方形、三角形、平行四边形或圆拼图。 ( 6 )结合生活情境认识角,会辨认直角、锐角和钝角。 ( 7 )能对简单几何体和图形进行分类。
| 1. 能通过实物和模型辨认长方体、正方体、圆柱和球等 几何体 。 2. 能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体 (参见例 11 )。 3. 能辨认长方形、正方形、三角形、平行四边形、圆等简单图形。 4. 通过观察、操作, 初步认识 长方形、正方形的特征。 5. 会用长方形、正方形、三角形、平行四边形或圆拼图。 6. 结合生活情境认识角,了解直角、锐角和钝角。 7. 能对简单几何体和图形进行分类(参见例 20 )。
|
第二 学段 | ( 1 ) 了解两点确定一条直线和两条相交直线确定一个点。 ( 2 ) 能区分直线、线段和射线。 ( 3 )体会两点间所有连线中线段最短,知道两点间的距离。 ( 4 )知道周角、平角的概念及周角、平角、钝角、直角、锐角之间的大小关系。 ( 5 )结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。 ( 6 )通过观察、操作,认识平行四边形、梯形和圆,会用圆规画圆。 ( 7 )认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是 180 ° 。 ( 8 )认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。 ( 9 )通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的 展开图。 ( 10 )能辨认 从不同方位看到的物体的形状和相对位置。 [参见例 1 ] | 1. 结合实例了解线段、射线和直线。 2.体会两点间所有连线中线段最短,知道两点间的距离。 3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。 4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。 5.通过观察、操作,认识平行四边形、梯形和圆 ,知道扇形, 会用圆规画圆。 6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是 180° 。 7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。 8.能辨认 从不同方向(前面、侧面、上面)看到的物体的形状图 (参见例 32 )。 9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
|
< 标准 > 的”图形与几何”第一、二学段仍分为四部分,具体表示有所变动,( 1 )图形的认识,( 2 )测量,( 3 )图形的运动(修改稿:图形与变换),( 4 )图形与位置。图形的运动”强调了图形的运动是研究图形性质的一种有效方法。运动也是一种基本的数学思想。第二学段的内容标准删除“两点确定一条直线”和“两条直线确定一个点”。
“图形与几何”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界。新《标准》突出用观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和图形设计与推理(合情推理与演绎推理)的能力。
新《标准》在第二学段还增加了知道扇形这一内容。扇形的认识,《大纲》(修订版)教材作为选学内容,《数学课程标准》中没有认识扇形的要求。
认识扇形在《课标修改稿》中确实没有做要求,但在 “ 统计与概率 ” 部分却明确提出了通过实例认识扇形统计图的内容标准,考虑到知识的系统性、逻辑性和连贯性,以及学生认识扇形统计图的需要,《课标修订稿》在认识圆的基础上,增加了初步认识扇形。
简单说对图形认识的要求主要包括两个方面:
一是对图形自身特征的认识。
二是对图形各元素之间、图形与图形之间关系的认识。
在三个学段中,认识同一个或同一类图形的要求有明显的层次性:从 “ 辨认 ” 到 “ 初步认识 ” ,再从 “ 认识 ” 到 “ 探索并证明 ” 。例如,对于长方体、正方体、圆柱和球等几何体,第一学段要求 “ 辨认 ” ;第二学段要求 “ 认识 ” ;第三学段要求了解其中一些几何体的侧面展开图。
又如,对于平行四边形,第一学段要求 “ 辨认 ” ;第二学段要求 “ 认识 ” ;第三学段要求 “ 探索并证明平行四边形的性质定理、判定定理 ” 。
再如,三角形内角和的例子:
关于 “ 视图 ” ,第一学段要求 “ 能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体 ” ;第二学段要求 “ 能辨认从不同方向(前面、侧面、上面)看到的物体的形状图 ” ;第三学段要求 “ 会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,会根据视图描述简单的几何体 ” 。
这种要求的层次性,既体现了从整体到局部的认识过程;也符合学生的认知特点,逐渐深入、循序渐进。
对图形的各元素之间、图形与图形之间的关系的认识,主要包括大小、位置、形状之间关系的认识。第一学段的 “ 了解直角、锐角和钝角 ” ;第二学段的 “ 体会两点间所有连线中线段最短 ” ; “ 了解周角、平角、钝角、直角、锐角之间的大小关系 ” ; “ 了解 三角形两边之和大 于第三边 ” ;第三学段的 “ 会比较线段的长短 ” , “ 能比较角的大小 ” 等,都是对图形大小关系的研究 。
点与直线的位置关系、直线与直线的位置关系、点与圆的位置关系、直线与圆的位置关系等,是义务教育阶段几种主要的图形位置关系;轴对称、中心对称、平移也反映了图形与图形之间的位置关系。
图形的全等、相似都是研究研究图形之间关系的课程内容,全等研究的是图形的形状、大小关系;图形的相似研究的是图形的形状之间的关系;而图形的位似则还涉及到了图形的位置关系。
在儿童的不同学段上,形象思维的发展是有层次的,荷兰范 . 希尔夫妇对学生几何思维水平的研究说明了从直观辨认到探索特征是儿童的对图形的形象思维规律。他们将学生的图形认知水平主要分为五级:水平 1 :直观化;水平 2 :描述 / 分析;水平 3 :抽象 / 关联;水平 4 :演绎 / 形式化推理;水平 5 :严密 / 元数学。一二三水平在小学体现,四五水平是在中学体现的。这和我们课标的要求也是一致。
图形认识的教学先明确两点:
一是这部分内容属于图形认识的哪个水平,前后继知识各是什么;
二是多数学生现在的形象思维处于一个什么阶段,要通过你的教学达到什么阶段。
问题二、 小学阶段对于 “ 图形的认识 ” 这一内容,教材是遵循怎样一个编排体系的?
第一, 现在的教材,在图形的认识当中,是先讲立体,再讲平面,再回到立体。从历史发展过程上看,实际上我们中国小学的传统教材,最初是按点、线、面、体的逻辑关系讲的。到了上个世纪 90 年代以后,义务大纲出现就发生变化了,先讲立体以后再讲平面,然后又回到立体。为什么当时要改?因为当时很多老师都反映,高年级孩子,对几何立体图形,本身的识图的能力比较低,认识起来比较困难。这部分是个难点,分阶段安排可以分散难点。
第二,实际上一个人是生活在三维空间当中,一个婴儿从出生落地,他所有接触的东西,看到的东西,实际上都是体,他的奶瓶,他玩的积木都是体,住的大大楼里,所有东西都是体,在这个过程中儿童积累了很多立体的物体,因此所有的几何体,都具有直观的实物的模型的。那在这种情况之下,低年级孩子,刚开始初步的认识立体图形是有可能的。
所以一是有必要,二是有可能,再加上儿童的空间观念的形成,必然是有一个长期的反复的积累的过程,不能一次到位。所以当时的义务大纲就打破了传统的一步到位,先讲立体图形,要求直观认识,然后中间一段是平面图形,最后再讲立体图形。现在教材也一样,先讲立体,后讲平面,再回到立体,但这两次讲立体层次不同,第一次要求辨认,到第二学段要求是认识。 也就是 现在教材是 “ 体-形-体 ” 的混合螺旋编排结构
问题三、 怎样通过图形的认识教学,培养学生的空间观念?
第一、通过对实物的观察与操作认识图形
第一学段要求 “ 能通过实物和模型辨认长方体、正方体、圆柱和球等几何体 ” 、 “ 通过观察、操作,初步认识长方形、正方形的特征 ” ;第二学段要求 “ 结合实例了解线段、射线和直线 ” 、 “ 结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系 ” 等,这些要求的共同特点是通过观察与操作认识图形,直观地、整体地认识立体图形和平面图形。从对实物的观察与操作过程中来认识图形的特征和性质,既符合学生认识事物的规律,也符合数学课程的目标要求。这样的过程有助于学生发展能力,初步体会数学的思想方法,发展积极的情感与态度。
人们生活在三维的空间中,常见的楼房、积木、各种包装盒、皮球 … 都给我们以长方体、正方体、圆柱体、球体等直观形象。基于这样的生活经验,学生可以从认识立体图形开始, “ 通过实物和模型等辨认长方体、正方体、圆柱和球等几何体 ” 。 “ 辨认 ” 是认识的低级阶段,但与以往的经验有所不同,它要经历从实物到几何图形的抽象过程。
从不同的角度观察长方体、正方体、圆柱体、球的表面,抽象出长方形、正方形、圆等平面图形。像这样从具体到抽象,从实物到图形,从整体到局部的安排,揭示了立体图形与平面图形的关系,也符合学生的认知特点。
第二学段要求 “ 结合实例了解线段、射线和直线 ” 、 “ 结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系 ” 。射线和直线涉及到了无限的概念,与长方体、正方体、长方形、正方形等相比,在现实中没有 “ 直线 ” 的实物原型,这就需要学生进行抽象与想象。认识线段要容易一些,因为现实生活中有 “ 线段 ” 的实物原型。
类似的,学生理解两条直线平行的位置关系也比较困难,可以利用两根铁轨作为实物原型来描述,两根铁轨不相交以及它们之间的距离处处相等的事实,都揭示了平行线的本质,但铁轨无法总是笔直的延伸,所以在从实物到几何图形的抽象过程中还需要想象,这有助于学生发展抽象能力和空间观念。
第二、基于图形的想象和图形之间的转换,发展空间观念
新教材内容编排上增加了 “ 视图和投影、展开与折叠 ” 等内容。
视图和投影,过去小学没有,现在小学数学几何和图形当中,增加了观察物体,这部分在课标上有两个要求。
第一个学段的要求是根据具体事物照片或直观图,辨认从不同角度观察到的简单物体的形状,这是辨认。很多教材里面是这样,有的是拿个实物,有的是拿熊猫玩具等,让孩子们从各种角度去看,看的时候,孩子们就发现,不同角度看到的熊猫不一样。
第二个学段的要求能辨认从不同方向,方向是从前面、侧面或者上面来观察,从不同方向看到物体的形状图,这个形状图实际上就是一个平面图,就是从水平方向对物体所做的一个投影,也就是拍照。
例如
拍照的结果,虽然不是真正意义上的视图,但是它的确实现了,把三维空间向二维空间的一个转化的过程,这是过去小学没有的,现在有了,这两个阶段的目标要达到,就为第三学段的正式的视图和投影打下比较好的基础。
“折叠”和“展开”,过去教材也有,长方体、正方体、圆柱体的展开图。但是这个做法现在要加强,而且在进行折叠和展开当中,操作过程,必须要通过儿童的想象,这个过程本有什么实际意义呢?这是让孩子们认识到,立体图形的结构和展开图之间的这种对应关系。怎么让他来认识这个对应关系呢?
例如,“正方体展开图”课例。
通过课例可以看到,孩子可以折一折,通过操作找到结果;也可以不折,先想一想,我们提倡先想象,再动手验证,这样有利于发展学生的空间想象力,促进空间观念的形成。
让学生操作的时候,它不是一个简单的操作,首先得想象一下,可能会是什么样子,然后再通过操作,去验证自己的想法,而这个过程,学生参与这个想象,包括动手操作,包括把这个过程表现出来,是非常重要的。
让学生的这种想象也好,操作也好,实际上进一步理解,我们讲三维和两维之间的这样一种关系,就是你讲的对应关系,是经历了下面过程。
“ 认识长方体、正方体和圆柱的展开图 ” ,体现了三维图形与二维图形之间相互转换的具体要求,目标是在图形转换中引导学生观察、抽象、想象,发展空间观念。教学中应注重展开与折叠的操作过程,通过想象实现图形之间的转换,让学生记忆展开图的数量或类型的做法是不可取的。
认识图形过程中大量的操作性活动,有利于学生积累数学活动经验,发展学生空间观念教学中应当予以充分的重视。 |