一、选择题
1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )
A. . . .
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.abc>0 .b2﹣4ac<0 .9a+3b+c>0 .c+8a<0
3.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 4 | 12 | 16 | 17 | 1 |
A.中位数是2 .众数是17 .平均数是2 .方差是2
4.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )
A.108° .90° .72° .60°
5.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是( )
A. .
C. .
6.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).
A. . . .
7.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为( )
A. . . .
8.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. .
C. .
9.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )
A.π﹣2 .π﹣ .π﹣2 .π﹣
10.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1 .0,1 .1,2 .1,2,3
11.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )
A. . . .
12.下列分解因式正确的是( )
A. .
C. .
二、填空题
13.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 .
14.不等式组的整数解是x= .
15.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .
16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .
17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.
18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用次;甲、丙两车合运相同次数,运完这批货物,甲车共运吨;乙、丙两车合运相同次数,运完这批货物乙车共运吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费元计算)
19.若=2,则的值为________.
20.二元一次方程组的解为_____.
三、解答题
21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.
(1)原来每小时处理污水量是多少m2?
(2)若用新设备处理污水960m3,需要多长时间?
22.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
23.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
24.先化简,再求值:
25.解方程组:
【参】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
解:A.不是轴对称图形,是中心对称图形,不符合题意;
B.既是轴对称图形,也是中心对称图形,符合题意;
C.不是轴对称图形,是中心对称图形,不符合题意;
D.不是轴对称图形,也不是中心对称图形,不符合题意.
故选B.
2.D
解析:D
【解析】
【分析】
【详解】
试题分析:根据图象可知抛物线开口向下,抛物线与y轴交于正半轴,对称轴是x=1>0,所以a<0,c>0,b>0,所以abc<0,所以A错误;因为抛物线与x轴有两个交点,所以>0,所以B错误;又抛物线与x轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以,所以C错误;因为当x=-2时,<0,又,所以b=-2a,所以<0,所以D正确,故选D.
考点:二次函数的图象及性质.
3.A
解析:A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
4.C
解析:C
【解析】
【分析】
首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.
【详解】
解:设此多边形为n边形,
根据题意得:180(n-2)=540,
解得:n=5,
∴这个正多边形的每一个外角等于:=72°.
故选C.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
5.D
解析:D
【解析】
【分析】
根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.
【详解】
∵点,点,点为弦的中点,
∴,,
∴,
又满足等式:,
∴,
故选D.
【点睛】
本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.
6.C
解析:C
【解析】
从上面看,看到两个圆形,
故选C.
7.D
解析:D
【解析】
解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.
点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.
8.C
解析:C
【解析】
分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:,即.
故选C.
点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
9.C
解析:C
【解析】
分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.
详解:连接OB和AC交于点D,如图所示:
∵圆的半径为2,
∴OB=OA=OC=2,
又四边形OABC是菱形,
∴OB⊥AC,OD=OB=1,
在Rt△COD中利用勾股定理可知:CD=,AC=2CD=2,
∵sin∠COD= ,
∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO=B×AC=×2×2=2,
S扇形AOC=,
则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=,
故选C.
点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=,有一定的难度.
10.A
解析:A
【解析】
【分析】
【详解】
由题意得,根的判别式为△=(-4)2-4×3k,
由方程有实数根,得(-4)2-4×3k≥0,
解得k≤,
由于一元二次方程的二次项系数不为零,所以k≠0,
所以k的取值范围为k≤且k≠0,
即k的非负整数值为1,
故选A.
11.A
解析:A
【解析】
从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,
故选A.
12.C
解析:C
【解析】
【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.
【详解】A. ,故A选项错误;
B. ,故B选项错误;
C. ,故C选项正确;
D. =(x-2)2,故D选项错误,
故选C.
【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.
二、填空题
13.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106
解析:6×106.
【解析】
【分析】
【详解】
将9600000用科学记数法表示为9.6×106.
故答案为9.6×106.
14.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【
解析:﹣4.
【解析】
【分析】
先求出不等式组的解集,再得出不等式组的整数解即可.
【详解】
解:,
∵解不等式①得:x≤﹣4,
解不等式②得:x>﹣5,
∴不等式组的解集为﹣5<x≤﹣4,
∴不等式组的整数解为x=﹣4,
故答案为﹣4.
【点睛】
本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.
15.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2
解析:12﹣4
【解析】
【分析】
【详解】
试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,
∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,
∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,
∴∠AOE=45°,ED=1,
∴AE=EO=,DO=﹣1,
∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,
S△ADF=×AD×AFsin30°=1,
∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.
故答案为12﹣4.
考点:1、旋转的性质;2、菱形的性质.
16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式
解析:3.
【解析】
试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.
考点:概率公式.
17.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1
解析:30°.
【解析】
【分析】
【详解】
解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,
∵五边形是正五边形,∴∠EAC=108°,
∵∠ACD=42°,∴∠1=180°-42°-108°=30°
故答案为:30°.
18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合
解析:
【解析】
【分析】
根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为
,乙的效率应该为,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.
【详解】
设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,
∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,
由题意列方程:
t乙=2t甲,
∴ 解得T=540.
∵甲车运180吨,丙车运540−180=360吨,
∴丙车每次运货量也是甲车的2倍,
∴甲车车主应得运费 (元),
故答案为:.
【点睛】
考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.
19.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本
解析:
【解析】
分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.
详解:∵=2,∴a=2b,
原式=
=
当a=2b时,原式==.
故答案为.
点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.
20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单
解析:
【解析】
【分析】
由加减消元法或代入消元法都可求解.
【详解】
,
②﹣①得③
将③代入①得
∴
故答案为:
【点睛】
本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.
三、解答题
21.(1)原来每小时处理污水量是40m2;(2)需要16小时.
【解析】
试题分析:设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,根据原来处理1200m3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可.
根据即可求出.
试题解析:设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,
根据题意得:
去分母得:
解得:
经检验 是分式方程的解,且符合题意,
则原来每小时处理污水量是40m2;
(2)根据题意得:(小时),
则需要16小时.
22.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
【解析】
【分析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.
【详解】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,
依题意,得:,
解得:x=6,
经检验,x=6是原方程的解,且符合题意,
.
答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;
(2)设A型机器安排m台,则B型机器安排台,
依题意,得:,
解得:,
为正整数,
,
答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
【点睛】
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.
【解析】
分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;
(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;
(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.
详解:(1)当x=6时,y1=3,y2=1,
∵y1﹣y2=3﹣1=2,
∴6月份出售这种蔬菜每千克的收益是2元.
(2)设y1=mx+n,y2=a(x﹣6)2+1.
将(3,5)、(6,3)代入y1=mx+n,
,解得:,
∴y1=﹣x+7;
将(3,4)代入y2=a(x﹣6)2+1,
4=a(3﹣6)2+1,解得:a=,
∴y2=(x﹣6)2+1=x2﹣4x+13.
∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.
∵﹣<0,
∴当x=5时,y1﹣y2取最大值,最大值为,
即5月份出售这种蔬菜,每千克的收益最大.
(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.
设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,
根据题意得:2t+(t+2)=22,
解得:t=4,
∴t+2=6.
答:4月份的销售量为4万千克,5月份的销售量为6万千克.
点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.
24.
【解析】
【分析】
根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.
【详解】
原式= ,
,
,
,
当x=3时,
原式==
【点睛】
本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.
25.
【解析】
【分析】
先对x2-3xy+2y2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.
【详解】
将方程 的左边因式分解,得或.
原方程组可以化为或
解这两个方程组得
所以原方程组的解是
【点睛】
本题考查了高次方程组,将高次方程化为一次方程是解题的关键.