最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

高三函数练习题难题

来源:动视网 责编:小OO 时间:2025-10-01 23:59:46
文档

高三函数练习题难题

函数练习题1、设函数 (1)求的单调区间、最大值;(2)讨论关于的方程的根的个数.2、已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y),(1)求f(1)的值;(2)证明f(x)在定义域上是增函数;(3)如果f(3)=1,求满足不等式f(x)-f()≥2的x的取值范围.3、已知函数.(I)当时,求函数的定义域;(II)若关于的不等式的解集是,求的取值范围.4、已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-
推荐度:
导读函数练习题1、设函数 (1)求的单调区间、最大值;(2)讨论关于的方程的根的个数.2、已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y),(1)求f(1)的值;(2)证明f(x)在定义域上是增函数;(3)如果f(3)=1,求满足不等式f(x)-f()≥2的x的取值范围.3、已知函数.(I)当时,求函数的定义域;(II)若关于的不等式的解集是,求的取值范围.4、已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-
函数练习题

1、设函数  

(1)求的单调区间、最大值;

(2)讨论关于的方程的根的个数.

2、已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y),

(1)求f(1)的值; 

(2)证明f(x)在定义域上是增函数;

(3)如果f( 3 )=1,求满足不等式f(x)-f()≥2的x的取值范围.

3、已知函数.

(I)当时,求函数的定义域;

(II)若关于的不等式的解集是,求的取值范围.

4、已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.

5、已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数上是减函数,求实数a的最小值;

(Ⅲ)若,使()成立,求实数a的取值范围. 

6、

7、

(1)求常数c的值;

(2)解不等式f(x)>+1.

二、填空题

8、下列四个命题,是真命题的有    (把你认为是真命题的序号都填上).

①若在区间(1,2)上有一个零点;,则p∧q为假命题;

②当时,的大小关系是;

③若,则在处取得极值;

④若不等的解集为,函数的定义域为,则“”是“”的充分不必要条件.

9、已知函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,

  且g(3)=0,则不等式f(x)g(x)<0的解集是_               _.

10、已知为常数,若函数有两个极值点,则的取值范围是               

三、选择题

11、定义在R上的偶函数在上单调递减,且,则满足 的的 集合为      (   )

A. (-∞,)∪(2,+∞)    B. (,1)∪(1,2)  C. (,1)∪(2,+∞)     D. (0,)∪(2,+∞)

12、已知是上的奇函数,且当时,,那么 的值为(   )

A.0                 B.         C.            D.

13、已知是R上的偶函数,当时,是函数的零点,则的大小关系是(   )     

    A.          B.

    C.          D.

14、已知函数 若,使得成立,则实数的取值范围是(   )         

A.       B.    C.       D.或

15、已知函数f(x)=sinx+ex+x2 011,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),则f2 012(x)=                                                          (  )

A.sinx+ex                         B. cosx+ex

C.-sinx+ex                       D.-cosx+ex 

四、综合题

(每空? 分,共? 分)

16、设函数f(x)=ex-ax-2.

(1)求f(x)的单调区间;

(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.

一、简答题

1、解:(1)  ………………1分

    由得

    当时,,单调递增;

    当时,,单调递减;

    ∴函数的单调递增区间是;单调递减区间是 …………3分

    ∴的最大值为  …………4分

    (2)令= …………5分

    ①当时,

    ∴

∵  ∴    

∴在上单调递增            ………………7分

    ②当时,,

    

    ∵

    ∴     ∴在(0,1)上单调递减  

   综合①②可知,当时,     …………9分

   当即时,没有零点,故关于方程的根的个数为0

   当即时,只有一个零点,故关于方程的根的个数为1

                                ……………………11分

   当即时,当时

   由(1)知

   要使,只需即

    当时, 由(1)知

    要使,只需即

    所以时,有两个零点   ………………13分

    综上所述

    当时,关于的方程根的个数为0

    当时,关于的方程根的个数为1

    当时,关于的方程根的个数为2  …………14分

2、解:(1)令x=y=1,得f(1)=2f(1),故f(1)=0. ………………………………2分

(2)令y= ,得f(1)=f(x)+f()=0,故f()=-f(x). ………………………………4分

任取x1,x2∈(0,+∞),且x1由于>1,故f()>0,从而f(x1)>f(x2).  ∴f(x)在(0,+∞)上是增函数. …………8分

(3)由于f(3)=1,在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2。……10分

又-f()=f(x-2),故所给不等式可化为f(x)+f(x-2) ≥f(9),即 f [x(x-2)] ≥f(9),

解得.∴x的取值范围是.…………………14分

3、解:(I)由题设知:,        …………1分

不等式的解集是以下三个不等式组解集的并集:              

,或,或,…………4分

解得函数的定义域为;               …………6分

(II)不等式即,                 …………8分

∵时,恒有,        …………10分

∵不等式解集是,

∴,求得的取值范围是.………12分

4、解:若p真,则f(x)=(2a-6)x在R上单调递减,

∴0<2a-6<1,∴3若q真,令f(x)=x2-3ax+2a2+1,则应满足

,∴,故a>,

又由题意应有p真q假或p假q真.

①     若p真q假,则,a无解.

②若p假q真,则,∴故a的取值范围是{a|5、解:由已知函数的定义域均为,且. …1分

(Ⅰ)函数,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

当且时,;当时,.

所以函数的单调减区间是,增区间是.  ………………3分

(Ⅱ)因f(x)在上为减函数,故在上恒成立. 

所以当时,.

又,

故当,即时,.

所以于是,故a的最小值为.       …………………………6分

(Ⅲ)命题“若使成立”等价于

“当时,有”.         

由(Ⅱ),当时,,.  

问题等价于:“当时,有”.      ………………………8分

当时,由(Ⅱ),在上为减函数,

则=,故.       

当0<时,由于在上为增函数,

故的值域为,即.

由的单调性和值域知,

唯一,使,且满足:

当时,,为减函数;当时,,为增函数;

所以,=,.

所以,,与矛盾,不合题意.

综上,得.                         …………………………14分

6、解: (Ⅰ)当时,.

因为当时,,,

且,

所以当时,,且

由于,所以,又,

故所求切线方程为,

   (Ⅱ) 因为,所以,则

①     当时,因为,,

所以由,解得,

从而当时, 

②     当时,因为,,

所以由,解得,

从而当时, 

③     当时,因为,

    从而 一定不成立

综上得,当且仅当时,,

从而当时,取得最大值为

(Ⅲ)“当时,”等价于“对恒成立”,即“(*)对恒成立”

①     当时,,则当时,,则(*)可化为

,即,而当时,,

所以,从而适合题意

②     当时,.

⑴     当时,(*)可化为,即,而,

所以,此时要求

⑵     当时,(*)可化为,

所以,此时只要求

(3)当时,(*)可化为,即,而,

所以,此时要求,由⑴⑵⑶,得符合题意要求.

 综合①②知,满足题意的存在,且的取值范围是

7、解析 (1)∵0∴c=.

(2)由(1)得f(x)=

由f(x)>+1,得当0当≤x<1时,解得≤x<.

∴f(x)>+1的解集为. 

二、填空题

8、 ①②④

9、; 

10、   0三、选择题

11、D 

12、D 

13、C 

14、A  

15、A

解析 ∵f1(x)=f′(x)=cosx+ex+2 011x2 010,f2(x)=f′1(x)=-sinx+ex+2 011×2 010x2 009,f3(x)=f′2(x)=-cosx+ex+2 011×2 010×2 009x2 008,f4(x)=f′3(x)=sinx+ex+2 011×2 010×2 009×2 008x2 007,…,∴f2 012(x)=sinx+ex.

四、综合题

16、

解析 (1)f(x)的定义域为(-∞,+∞),f′(x)=ex-a.

若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.

若a>0,则当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0,所以,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.

(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(ex-1)+x+1.

故当x>0时,(x-k)f′(x)+x+1>0等价于

k<+x(x>0). ①

令g(x)=+x,则g′(x)=+1=.

由(1)知,函数h(x)=ex-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g′(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).

当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).

由于①式等价于k

文档

高三函数练习题难题

函数练习题1、设函数 (1)求的单调区间、最大值;(2)讨论关于的方程的根的个数.2、已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y),(1)求f(1)的值;(2)证明f(x)在定义域上是增函数;(3)如果f(3)=1,求满足不等式f(x)-f()≥2的x的取值范围.3、已知函数.(I)当时,求函数的定义域;(II)若关于的不等式的解集是,求的取值范围.4、已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top