7.1 表7.4中给出了1981-2015年中国城镇居民人均年消费支出(PCE)和城镇居民人均可支配收入(PDI)数据。
表7.4 1981-2015年中国城镇居民消费支出(PCE)和可支配收入(PDI)数据 (单位:元)
年度 | 城镇居民人均消费支出PCE | 城镇居民人均可支配收入PDI | 年度 | 城镇居民人均消费支出PCE | 城镇居民人均可支配收入PDI |
1981 | 456.80 | 500.40 | 1999 | 4615.91 | 5854.02 |
1982 | 471.00 | 535.30 | 2000 | 4998.00 | 6280.00 |
1983 | 505.90 | 5.60 | 2001 | 5309.01 | 6859.60 |
1984 | 559.40 | 652.10 | 2002 | 6029.88 | 7702.80 |
1985 | 673.20 | 739.10 | 2003 | 6510.94 | 8472.20 |
1986 | 799.00 | 900.90 | 2004 | 7182.10 | 9421.60 |
1987 | 884.40 | 1002.10 | 2005 | 7942.88 | 10493.00 |
1988 | 1104.00 | 1180.20 | 2006 | 8696.55 | 11759.50 |
19 | 1211.00 | 1373.93 | 2007 | 9997.47 | 13785.80 |
1990 | 1278.90 | 1510.20 | 2008 | 11242.85 | 15780.76 |
1991 | 1453.80 | 1700.60 | 2009 | 122.55 | 17174.65 |
1992 | 1671.70 | 2026.60 | 2010 | 13471.45 | 19109.44 |
1993 | 2110.80 | 2577.40 | 2011 | 15160. | 21809.78 |
1994 | 2851.30 | 3496.20 | 2012 | 16674.32 | 245.72 |
1995 | 3537.57 | 4283.00 | 2013 | 18022. | 26955.10 |
1996 | 3919.47 | 4838.90 | 2014 | 19968.08 | 29381.00 |
1997 | 4185. | 5160.30 | 2015 | 21392.36 | 31790.31 |
1998 | 4331.61 | 5425.10 |
(1) 解释这两个回归模型的结果。
(2) 短期和长期边际消费倾向(MPC)是多少?分析该地区消费同收入的关系。
(3) 建立适当的分布滞后模型,用库伊克变换转换为库伊克模型后进行估计,并对估计结果进行分析判断。
【练习题7.1参考解答】
(1) 解释这两个回归模型的结果。
Dependent Variable: PCE | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 09:12 | ||||
Sample: 1981 2005 | ||||
Included observations: 25 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 149.0975 | 24.56734 | 6.0633 | 0.0000 |
PDI | 0.757527 | 0.005085 | 148.9840 | 0.0000 |
R-squared | 0.9965 | Mean dependent var | 2983.768 | |
Adjusted R-squared | 0.9920 | S.D. dependent var | 23.412 | |
S.E. of regression | 77.70773 | Akaike info criterion | 11.62040 | |
Sum squared resid | 138885.3 | Schwarz criterion | 11.71791 | |
Log likelihood | -143.2551 | F-statistic | 22196.24 | |
Durbin-Watson stat | 0.531721 | Prob(F-statistic) | 0.000000 |
Dependent Variable: PCE | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 09:13 | ||||
Sample(adjusted): 1982 2005 | ||||
Included observations: 24 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 147.6886 | 26.73579 | 5.524001 | 0.0000 |
PDI | 0.679123 | 0.069959 | 9.707385 | 0.0000 |
PCE(-1) | 0.111035 | 0.100186 | 1.108287 | 0.2803 |
R-squared | 0.999012 | Mean dependent var | 30.059 | |
Adjusted R-squared | 0.9918 | S.D. dependent var | 2354.635 | |
S.E. of regression | 77.44504 | Akaike info criterion | 11.65348 | |
Sum squared resid | 125952.4 | Schwarz criterion | 11.80074 | |
Log likelihood | -136.8418 | F-statistic | 10620.10 | |
Durbin-Watson stat | 0.688430 | Prob(F-statistic) | 0.000000 |
短期MPC=0.68,长期MPC=0.679/(1-0.111)=0.7
(3) 建立适当的分布滞后模型,用库伊克变换转换为库伊克模型后进行估计,并对估计结果进行分析判断。
在滞后1-5期内,根据AIC最小,选择滞后5期,其回归结果如下:
Dependent Variable: PCE | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 09:25 | ||||
Sample(adjusted): 1986 2005 | ||||
Included observations: 20 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 167.9590 | 33.27793 | 5.047158 | 0.0002 |
PDI | 0.707933 | 0.124878 | 5.6681 | 0.0001 |
PDI(-1) | 0.225272 | 0.274293 | 0.821283 | 0.4263 |
PDI(-2) | -0.1711 | 0.316743 | -0.5847 | 0.5818 |
PDI(-3) | -0.069525 | 0.328725 | -0.211498 | 0.8358 |
PDI(-4) | 0.2874 | 0.300470 | 0.881532 | 0.3940 |
PDI(-5) | -0.226966 | 0.145557 | -1.559292 | 0.1429 |
R-squared | 0.999382 | Mean dependent var | 3596.396 | |
Adjusted R-squared | 0.999096 | S.D. dependent var | 2254.922 | |
S.E. of regression | 67.79561 | Akaike info criterion | 11.54009 | |
Sum squared resid | 59751.18 | Schwarz criterion | 11.88860 | |
Log likelihood | -108.4009 | F-statistic | 3501.011 | |
Durbin-Watson stat | 1.471380 | Prob(F-statistic) | 0.000000 |
7.2 表7.5中给出了中国1980-2016年固定资产投资Y与社会消费品零售总额X的资料。取阿尔蒙多项式的次数m=2,运用阿尔蒙多项式变换法估计以下分布滞后模型:
表7.5中国1980-2016年固定资产投资Y与社会零售总额X数据 (单位:亿元)
年份 | 固定资产投资 Y | 社会消费品零售总额X | 年份 | 固定资产投资 Y | 社会消费品零售总额X |
1980 | 910.9 | 2140.0 | 1999 | 29854.7 | 357.9 |
1981 | 961.0 | 2350.0 | 2000 | 32917.7 | 39105.7 |
1982 | 1230.4 | 2570.0 | 2001 | 37213.5 | 43055.4 |
1983 | 1430.1 | 2849.4 | 2002 | 43499.9 | 48135.9 |
1984 | 1832.9 | 3376.4 | 2003 | 55566.6 | 52516.3 |
1985 | 2543.2 | 4305.0 | 2004 | 70477.4 | 59501.0 |
1986 | 3120.6 | 4950.0 | 2005 | 88773.6 | 67176.6 |
1987 | 3791.7 | 5820.0 | 2006 | 109998.2 | 710.0 |
1988 | 4753.8 | 7440.0 | 2007 | 137323.9 | 210.0 |
19 | 4410.4 | 8101.4 | 2008 | 172828.4 | 114830.1 |
1990 | 4517.0 | 8300.1 | 2009 | 224598.8 | 132678.4 |
1991 | 5594.5 | 9415.6 | 2010 | 251683.8 | 156998.4 |
1992 | 8080.1 | 10993.7 | 2011 | 311485.1 | 183918.6 |
1993 | 13072.3 | 14270.4 | 2012 | 374694.7 | 210307.0 |
1994 | 17042.1 | 18622.9 | 2013 | 446294.1 | 237809.9 |
1995 | 20019.3 | 23613.8 | 2014 | 512020.7 | 2716.1 |
1996 | 22913.5 | 28360.2 | 2015 | 561999.8 | 300930.8 |
1997 | 24941.1 | 31252.9 | 2016 | 6065.7 | 332316.3 |
1998 | 28406.2 | 33378.1 |
直接估计结果如下:
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 09:32 | ||||
Sample(adjusted): 1984 2016 | ||||
Included observations: 33 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -23633.42 | 3701.825 | -6.384260 | 0.0000 |
X | 0.461927 | 0.918198 | 0.503080 | 0.6190 |
X(-1) | 2.086566 | 1.685958 | 1.237614 | 0.2265 |
X(-2) | -0.543254 | 1.708205 | -0.318026 | 0.7529 |
X(-3) | 1.150577 | 1.843808 | 0.624022 | 0.5379 |
X(-4) | -1.317321 | 1.283331 | -1.0286 | 0.3138 |
R-squared | 0.993755 | Mean dependent var | 1282.7 | |
Adjusted R-squared | 0.992598 | S.D. dependent var | 180131.0 | |
S.E. of regression | 15497.23 | Akaike info criterion | 22.29768 | |
Sum squared resid | 6.48E+09 | Schwarz criterion | 22.56977 | |
Log likelihood | -361.9117 | F-statistic | 859.2660 | |
Durbin-Watson stat | 0.229807 | Prob(F-statistic) | 0.000000 | |
使用阿尔蒙变换估计结果如下: Dependent Variable: Y | ||||
Method: Least Squares |
Date: 03/10/18 Time: 09:37 | ||||
Sample(adjusted): 1984 2016 | ||||
Included observations: 33 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -23683.13 | 3619.054 | -6.544010 | 0.0000 |
Z0 | 0.801678 | 0.623778 | 1.285198 | 0.20 |
Z1 | 0.482317 | 1.366707 | 0.352905 | 0.7267 |
Z2 | -0.233322 | 0.358793 | -0.650298 | 0.5206 |
R-squared | 0.993572 | Mean dependent var | 1282.7 | |
Adjusted R-squared | 0.992907 | S.D. dependent var | 180131.0 | |
S.E. of regression | 15170.17 | Akaike info criterion | 22.20526 | |
Sum squared resid | 6.67E+09 | Schwarz criterion | 22.38666 | |
Log likelihood | -362.3868 | F-statistic | 1494.254 | |
Durbin-Watson stat | 0.287072 | Prob(F-statistic) | 0.000000 |
0.802
=1.051
=0.833
=0.149
=-1.002
直接使用软件结果:
Dependent Variable: Y | |||||
Method: Least Squares | |||||
Date: 03/10/18 Time: 09:39 | |||||
Sample(adjusted): 1984 2016 | |||||
Included observations: 33 after adjusting endpoints | |||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
C | -23683.13 | 3619.054 | -6.544010 | 0.0000 | |
PDL01 | 0.833024 | 0.7025 | 1.185555 | 0.2454 | |
PDL02 | -0.450971 | 0.144976 | -3.110662 | 0.0042 | |
PDL03 | -0.233322 | 0.358793 | -0.650298 | 0.5206 | |
R-squared | 0.993572 | Mean dependent var | 1282.7 | ||
Adjusted R-squared | 0.992907 | S.D. dependent var | 180131.0 | ||
S.E. of regression | 15170.17 | Akaike info criterion | 22.20526 | ||
Sum squared resid | 6.67E+09 | Schwarz criterion | 22.38666 | ||
Log likelihood | -362.3868 | F-statistic | 1494.254 | ||
Durbin-Watson stat | 0.287072 | Prob(F-statistic) | 0.000000 | ||
Lag Distribution of X | i | Coefficient | Std. Error | T-Statistic | |
. * | | 0 | 0.80168 | 0.62378 | 1.28520 | |
. *| | 1 | 1.05067 | 0.42723 | 2.45927 | |
. * | | 2 | 0.83302 | 0.702 | 1.18555 |
.* | | 3 | 0.14873 | 0.31166 | 0.47722 | |
* . | | 4 | -1.00221 | 0.92567 | -1.08269 | |
Sum of Lags | 1.83190 | 0.18562 | 9.86901 |
1)设定模型
其中为预期最佳值。
2)设定模型
其中为预期最佳值。
3)设定模型
其中为预期最佳值。
【练习题7.3参考解答】
1)设定模型
其中为预期最佳值。
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 10:09 | ||||
Sample(adjusted): 1981 2016 | ||||
Included observations: 36 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -5669.505 | 2498.919 | -2.268783 | 0.0299 |
X | 0.6982 | 0.130183 | 5.108043 | 0.0000 |
Y(-1) | 0.733544 | 0.077811 | 9.427269 | 0.0000 |
R-squared | 0.9973 | Mean dependent var | 117676.6 | |
Adjusted R-squared | 0.997765 | S.D. dependent var | 175881.8 | |
S.E. of regression | 8314.081 | Akaike info criterion | 20.964 | |
Sum squared resid | 2.28E+09 | Schwarz criterion | 21.10090 | |
Log likelihood | -374.4410 | F-statistic | 7815.118 | |
Durbin-Watson stat | 0.925919 | Prob(F-statistic) | 0.000000 |
2)设定模型
其中为预期最佳值。
假设调整方程为:,则转化为一阶自回归模型后的回归结果为:
Dependent Variable: LOG(Y) | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 10:11 | ||||
Sample(adjusted): 1981 2016 | ||||
Included observations: 36 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -0.541492 | 0.6920 | -0.782403 | 0.4396 |
LOG(X) | 0.299685 | 0.262322 | 1.142434 | 0.2615 |
LOG(Y(-1)) | 0.7900 | 0.200608 | 3.812909 | 0.0006 |
R-squared | 0.997423 | Mean dependent var | 10.25491 | |
Adjusted R-squared | 0.997267 | S.D. dependent var | 1.956096 | |
S.E. of regression | 0.102265 | Akaike info criterion | -1.2847 | |
Sum squared resid | 0.345117 | Schwarz criterion | -1.510887 | |
Log likelihood | 32.57124 | F-statistic | 6386.241 | |
Durbin-Watson stat | 0.873321 | Prob(F-statistic) | 0.000000 |
3)设定模型
其中为预期最佳值。
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 10:09 | ||||
Sample(adjusted): 1981 2016 | ||||
Included observations: 36 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -5669.505 | 2498.919 | -2.268783 | 0.0299 |
X | 0.6982 | 0.130183 | 5.108043 | 0.0000 |
Y(-1) | 0.733544 | 0.077811 | 9.427269 | 0.0000 |
R-squared | 0.9973 | Mean dependent var | 117676.6 | |
Adjusted R-squared | 0.997765 | S.D. dependent var | 175881.8 | |
S.E. of regression | 8314.081 | Akaike info criterion | 20.964 | |
Sum squared resid | 2.28E+09 | Schwarz criterion | 21.10090 | |
Log likelihood | -374.4410 | F-statistic | 7815.118 | |
Durbin-Watson stat | 0.925919 | Prob(F-statistic) | 0.000000 |
7.4表7.6给出中国各年末货币流通量Y,社会商品零售额X1、城乡居民储蓄余额X 2的数据。
表7.6中国年末货币流通量、社会商品零售额、城乡居民储蓄余额数据 (单位:亿元)
年份 | 年末货币流通量Y | 社会消费品零售总额X1 | 城乡居民储蓄年底余额X2 |
19 | 2344.0 | 8101.4 | 5184.50 |
1990 | 24.4 | 8300.1 | 7119.60 |
1991 | 3177.8 | 9415.6 | 9244.90 |
1992 | 4336.0 | 10993.7 | 11757.30 |
1993 | 58.7 | 14270.4 | 15203.50 |
1994 | 7288.6 | 18622.9 | 21518.80 |
1995 | 7885.3 | 23613.8 | 29662.30 |
1996 | 8802.0 | 28360.2 | 38520.80 |
1997 | 10177.6 | 31252.9 | 46279.80 |
1998 | 11204.2 | 33378.1 | 53407.47 |
1999 | 13455.5 | 357.9 | 59621.83 |
2000 | 14652.7 | 39105.7 | 332.38 |
2001 | 15688.8 | 43055.4 | 73762.43 |
2002 | 17278.0 | 48135.9 | 86910.65 |
2003 | 19746.0 | 52516.3 | 103617.65 |
2004 | 21468.3 | 59501.0 | 119555.39 |
2005 | 24031.7 | 67176.6 | 141050.99 |
2006 | 27072.6 | 710.0 | 161587.30 |
2007 | 30334.3 | 210.0 | 172534.19 |
2008 | 34219.0 | 114830.1 | 217885.35 |
2009 | 38246.0 | 132678.4 | 260771.66 |
2010 | 44628.2 | 156998.4 | 303302.49 |
2011 | 50748.5 | 183918.6 | 343635. |
2012 | 54659.8 | 210306.9 | 399551.00 |
2013 | 58574.4 | 237809.9 | 447601.57 |
2014 | 60259.5 | 2716.1 | 485261.34 |
其中,为长期(或所需求的)货币流通量。试根据局部调整假设,作模型变换,估计并检验参数,对参数经济意义做出解释。
【练习题7.4参考解答】
利用表中数据设定模型:
其中,为长期(或所需求的)货币流通量。试根据局部调整假设,作模型变换,估计并检验参数,对参数经济意义做出解释。
假设局部调整方程为:,对,可转化为回归方程:,其回归结果如下:
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 10:03 | ||||
Sample(adjusted): 1990 2014 | ||||
Included observations: 25 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 1618.034 | 732.14 | 2.209979 | 0.0383 |
Y(-1) | 0.981020 | 0.149312 | 6.570280 | 0.0000 |
X1 | -0.130429 | 0.0414 | -3.145590 | 0.0049 |
X2 | 0.078399 | 0.033706 | 2.325972 | 0.0301 |
R-squared | 0.997519 | Mean dependent var | 23457.75 | |
Adjusted R-squared | 0.9971 | S.D. dependent var | 18266.54 | |
S.E. of regression | 972.7612 | Akaike info criterion | 16.74380 | |
Sum squared resid | 19871553 | Schwarz criterion | 16.93882 | |
Log likelihood | -205.2975 | F-statistic | 2813.916 | |
Durbin-Watson stat | 1.112498 | Prob(F-statistic) | 0.000000 |
假设局部调整方程为:,对,可转化为回归方程:,其回归结果如下:
Dependent Variable: LOG(Y) | ||||
Method: Least Squares | ||||
Date: 03/10/18 Time: 10:04 | ||||
Sample(adjusted): 1990 2014 | ||||
Included observations: 25 after adjusting endpoints | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 0.657788 | 0.277162 | 2.373296 | 0.0273 |
LOG(Y(-1)) | 0.741910 | 0.230602 | 3.217270 | 0.0041 |
LOG(X1) | 0.053350 | 0.102727 | 0.519332 | 0.6090 |
LOG(X2) | 0.121154 | 0.178537 | 0.678593 | 0.5048 |
R-squared | 0.996730 | Mean dependent var | 9.716778 | |
Adjusted R-squared | 0.996263 | S.D. dependent var | 0.913771 | |
S.E. of regression | 0.055860 | Akaike info criterion | -2.786285 | |
Sum squared resid | 0.065527 | Schwarz criterion | -2.591265 | |
Log likelihood | 38.82856 | F-statistic | 2133.726 | |
Durbin-Watson stat | 1.0780 | Prob(F-statistic) | 0.000000 |
试回答下列问题:
1)分布滞后系数的衰减率是多少?
2)模型中是否存在多重共线性问题?请说明判断的理由。
3)收入对消费的即期和长期影响乘数是多少?
4)某同学查表发现,在显著性水平下,DW检验临界值为,。请问该同学试图得出什么结论?你认为该同学的做法是否存在问题?请帮该同学完成后续工作。
【练习题7.5参考解答】
1)分布滞后系数的衰减率为0.82
2)模型中各斜率系数均显著,没有明显的多重共线性问题。
3)收入对消费的即期和长期影响乘数分别是:
即期乘数为0.28; 长期乘数为0.28/(1-0.82)=1.56
4)该同学试图检验是否存在自相关性问题,但是此模型为自回归模型,模型中有滞后被解释变量,此时不能使用DW检验法。而可以用德宾h检验,可计算出其h统计量为:
式中:d=1.45;n=37;;
;
h=1.82,小于,表明5%显著水平下不存在自相关性问题。
7.6利用某地区1980—2014年固定资产投资(Y)与地区生产总值GDP(X)的数据资料(单位:亿元),使用OLS法估计出如下模型:
(1)上述模型是否存在自相关性问题?
(2)如果将上述模型看成是局部调整模型的估计结果,试计算调节系数。
【练习题7.6参考解答】
(1) 式中:d=1.5321;n=35;;
;
h=1.8038,小于,表明5%显著水平下不存在自相关性问题。
(2) 如果将模型看成是局部调整模型的估计结果,, 则调节系数。
7.7联系自己所学的专业选择一个实际问题,设定一个分布滞后模型或自回归模型,并自己去收集样本数据,用本章的方法估计和检验这个模型,你如何评价自己所做的这项研究?
【练习题7.7参考解答】
本题无参考解答