4、解析 ∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.
5、解析 ∵≥1,∴|x+1|≥|x+2|.
∴x2+2x+1≥x2+4x+4,∴2x+3≤0.
∴x≤-且x≠-2.
6、解 (1)由题设知|x+1|+|x-2|>5,
不等式的解集是以下三个不等式组解集的并集:
或或
解得函数f(x)的定义域为(-∞,-2)∪(3,+∞).
(2)不等式f(x)≥2即|x+1|+|x-2|>m+2,
∵x∈R时,恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
不等式|x+1|+|x-2|≥m+2解集是R,
∴m+2≤3,m的取值范围是(-∞,1].
7、解 方法一 (1)由f(x)≤3得|x-a|≤3,解得a-3≤x≤a+3.
又已知不等式f(x)≤3的解集为{x|-1≤x≤5},
所以解得a=2.
(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),
于是g(x)=|x-2|+|x+3|=
所以当x<-3时,g(x)>5;
当-3≤x≤2时,g(x)=5;
当x>2时,g(x)>5.
综上可得,g(x)的最小值为5.
从而,假设f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].
方法二 (1)同方法一.
(2)当a=2时,f(x)=|x-2|.
设g(x)=f(x)+f(x+5).
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得g(x)的最小值为5.
从而,假设f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].
8、解 (1)当a=2时,
f(x)+|x-4|=
当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;
当2<x<4时,f(x)≥4-|x-4|无解;
当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;
所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.
(2)记h(x)=f(2x+a)-2f(x),
则h(x)=
由|h(x)|≤2,解得≤x≤.
又已知|h(x)|≤2的解集为{x|1≤x≤2},
所以于是a=3.
9、解:〔Ⅰ〕当时,可化为。由此可得 或。
故不等式的解集为或。
( Ⅱ) 由 得
此不等式化为不等式组 或即 或
因为,所以不等式组的解集为由题设可得= ,故
10、证明 (1)∵a,b,c∈(0,+∞),
∴a+b≥2,b+c≥2,c+a≥2,
(-1)·(-1)·(-1)
=
≥=8.
(2)∵a,b,c∈(0,+∞),
∴a+b≥2,b+c≥2,c+a≥2,
2(a+b+c)≥2+2+2,
两边同加a+b+c得
3(a+b+c)≥a+b+c+2+2+2
=(++)2.
又a+b+c=1,∴(++)2≤3,
∴++≤.
11、证明 (1)要证a+b+c≥,
由于a,b,c>0,因此只需证明(a+b+c)2≥3.
即证:a2+b2+c2+2(ab+bc+ca)≥3,
而ab+bc+ca=1,
故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).
即证:a2+b2+c2≥ab+bc+ca.
而这可以由ab+bc+ca≤++=a2+b2+c2 (当且仅当a=b=c时等号成立)证得.
∴原不等式成立.
(2) + + =.
在(1)中已证a+b+c≥.
因此要证原不等式成立,只需证明≥++.
即证a+b+c≤1,
即证a+b+c≤ab+bc+ca.
而a=≤,
b≤,c≤.
∴a+b+c≤ab+bc+ca (a=b=c=时等号成立).
∴原不等式成立.
12、证明:因为x>0,y>0,
所以1+x+y2≥3>0,
1+x2+y≥3>0,
故(1+x+y2)(1+x2+y)≥3·3=9xy.
21、(1)解 因为f(x+2)=m-|x|,
f(x+2)≥0等价于|x|≤m.
由|x|≤m有解,得m≥0,且其解集为{x|-m≤x≤m}.
又f(x+2)≥0的解集为[-1,1],故m=1.
(2)证明 由(1)知++=1,
又a,b,c∈R+,由柯西不等式得
a+2b+3c=(a+2b+3c)
≥2=9.
13、解 由柯西不等式(32+42)·(x2+y2)≥(3x+4y)2,①
得25(x2+y2)≥4,所以x2+y2≥.
不等式①中当且仅当=时等号成立,x2+y2取得最小值,
由方程组解得
因此当x=,y=时,x2+y2取得最小值,最小值为.
14、函数的定义域为[5,9]