文科数学
考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真查对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是不是一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=,B=,则
A.AB= B.AB
C.AB D.AB=R
2.为评估一种农作物的种植效果,选了n块地作实验田.这n块地的亩产量(单位:kg)别离为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
3.下列各式的运算结果为纯虚数的是
A.i(1+i)2 B.i2(1-i) C.(1+i)2 D.i(1+i)
4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部份和白色部份关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部份的概率是
A. B. C. D.
5.已知F是双曲线C:x2-=1的右核心,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为
A. B. C. D.
6.如图,在下列四个正方体中,A,B为正方体的两个极点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是
7.设x,y知足约束条件则z=x+y的最大值为
A.0 B.1 C.2 D.3
8..函数的部份图像大致为
9.已知函数,则
A.在(0,2)单调递增 B.在(0,2)单调递减
C.y=的图像关于直线x=1对称 D.y=的图像关于点(1,0)对称
10.如图是为了求出知足的最小偶数n,学|科网那么在和两个空白框中,可以别离填入
A.A>1000和n=n+1 B.A>1000和n=n+2
C.A≤1000和n=n+1 D.A≤1000和n=n+2
11.△ABC的内角A、B、C的对边别离为a、b、c。已知,a=2,c=,则C=
A. B. C. D.
12.设A、B是椭圆C:长轴的两个端点,若C上存在点M知足∠AMB=120°,则m的取值范围是
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.
14.曲线在点(1,2)处的切线方程为_________________________.
15.已知,tan α=2,则=__________。
16.已知三棱锥S-ABC的所有极点都在球O的球面上,SC是球O的直径。若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。
三、解答题:共70分。解承诺写出文字说明、证明进程或演算步骤。第17~21题为必考题,每一个试题考生都必需作答。第22、23题为选考题,考生按照要求作答。
(一)必考题:60分。
17.(12分)
记Sn为等比数列的前n项和,已知S2=2,S3=-6.
(1)求的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是不是成等差数列。
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
19.(12分)
为了监控某种零件的一条生产线的生产进程,查验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是查验员在一天内依次抽取的16个零件的尺寸:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
(1)求的相关系数,并回答是不是可以以为这一天生产的零件尺寸不随生产进程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,若是出现了尺寸在之外的零件,就以为这条生产线在这一天的生产进程可能出现了异样情况,需对当天的生产进程进行检查.
(ⅰ)从这一天抽检的结果看,是不是需对当天的生产进程进行检查?
(ⅱ)在之外的数据称为离群值,试剔除离群值,估量这条生产线当天生产的零件尺寸的均值与标准差.(精准到0.01)
附:样本的相关系数,.
20.(12分)
设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.
21.(12分)
已知函数=ex(ex﹣a)﹣a2x.
(1)讨论的单调性;
(2)若,求a的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,若是多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=−1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包括[–1,1],求a的取值范围.
2021年高考全国卷1文数答案
1.A
2.B
3.C
4.B
5.D
6.A
7.D
8.C
9.C
10.D
11.B
12.A
13.7
14.
15.
16.
17.(12分)【解析】(1)设的公比为.由题设可得 ,解得,.
故的通项公式为.
(2)由(1)可得.
由于,
故,,成等差数列.
18. (12分)【解析】(1)由已知,得,.
由于,故,从而平面.
又平面,所以平面平面.
(2)在平面内作,垂足为.
由(1)知,平面,故,可得平面.
设,则由已知可得,.
故四棱锥的体积.
由题设得,故.
从而,,.
可得四棱锥的侧面积为
.
19. (12分)【解析】(1)由样本数据得的相关系数为
.
由于,因此可以以为这一天生产的零件尺寸不随生产进程的进行而系统地变大或变小.
(2)(i)由于,由样本数据可以看出抽取的第13个零件的尺寸在之外,因此需对当天的生产进程进行检查.
(ii)剔除离群值,即第13个数据,剩下数据的平均数为,这条生产线当天生产的零件尺寸的均值的估量值为10.02.
,
剔除第13个数据,剩下数据的样本方差为,
这条生产线当天生产的零件尺寸的标准差的估量值为.
20.(12分)解:
(1)设A(x1,y1),B(x2,y2),则,,,x1+x2=4,
于是直线AB的斜率.
(2)由,得.
设M(x3,y3),由题设知,解得,于是M(2,1).
设直线AB的方程为,故线段AB的中点为N(2,2+m),|MN|=|m+1|.
将代入得.
当,即时,.
从而.
由题设知,即,解得.
所以直线AB的方程为.
21. (12分)(1)函数的概念域为,
,
①若,则,在单调递增.
②若,则由得.
当时,;当时,,所以在单调递减,在单调递增.
③若,则由得.
当时,;当时,,故在单调递减,在单调递增.
(2)①若,则,所以.
②若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时,.
③若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时.
综上,的取值范围为.
22.[选修4-4:坐标系与参数方程](10分)
解:(1)曲线的普通方程为.
当时,直线的普通方程为.
由解得或.
从而与的交点坐标为,.
(2)直线的普通方程为,故上的点到的距离为
.
当时,的最大值为.由题设得,所以;
当时,的最大值为.由题设得,所以.
综上,或.、
23.[选修4-5:不等式选讲](10分)
解:(1)当时,不等式等价于.①
当时,①式化为,无解;
当时,①式化为,从而;
当时,①式化为,从而.
所以的解集为.
(2)当时,.
所以的解集包括,等价于当时.
又在的最小值必为与之一,所以且,得.
所以的取值范围为.