最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

八下一次函数知识点总结

来源:动视网 责编:小OO 时间:2025-10-02 03:24:12
文档

八下一次函数知识点总结

八下一次函数知识点总结初中二年级的数学学习是中学学习的一个重要阶段,下面是XXXX为大家整理的关于八下一次函数知识点总结,希望对您有所帮助。欢迎大家阅读参考学习!八下一次函数知识点总结1一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考
推荐度:
导读八下一次函数知识点总结初中二年级的数学学习是中学学习的一个重要阶段,下面是XXXX为大家整理的关于八下一次函数知识点总结,希望对您有所帮助。欢迎大家阅读参考学习!八下一次函数知识点总结1一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考
八下一次函数知识点总结

  初中二年级的数学学习是中学学习的一个重要阶段,下面是XXXX为大家整理的关于八下一次函数知识点总结,希望对您有所帮助。欢迎大家阅读参考学习!

  八下一次函数知识点总结1

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:

  一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  4、正比例函数的性质

  一般地,正比例函数有下列性质:

  (1)当k0时,图像经过第一、三象限,y随x的增大而增大;

  (2)当k0时,图像经过第二、四象限,y随x的增大而减小。

  5、一次函数的性质

  一般地,一次函数有下列性质:

  (1)当k0时,y随x的增大而增大

  (2)当k0时,y随x的增大而减小

  6、正比例函数和一次函数解析式的确定

  确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

  7、一次函数与一元一次方程的关系:

  任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.

  结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.

  从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.

  八下一次函数知识点总结2

  知识点1一次函数和正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

  知识点2函数的图象

  由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

  画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

  知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质

  (1)k的正负决定直线的倾斜方向;

  ①k0时,y的值随x值的增大而增大;

  ②k﹤O时,y的值随x值的增大而减小.

  (2)|k|大小决定直线的倾斜程度,即|k|越大

  ①当b0时,直线与y轴交于正半轴上;

  ②当b0时,直线与y轴交于负半轴上;

  ③当b=0时,直线经过原点,是正比例函数.

  (4)由于k,b的符号不同,直线所经过的象限也不同;

  ①如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);

  ②如图所示,当k0,b

  ③如图所示,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);

  ④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

  (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

  知识点4正比例函数y=kx(k≠0)的性质

  (1)正比例函数y=kx的图象必经过原点;

  (2)当k0时,图象经过第一、三象限,y随x的增大而增大;

  (3)当k0时,图象经过第二、四象限,y随x的增大而减小.

  知识点5点P(x0,y0)与直线y=kx+b的图象的关系

  (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;

  (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.

  例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.

  知识点6确定正比例函数及一次函数表达式的条件

  (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.

  (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

  知识点7待定系数法

  先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

  知识点8用待定系数法确定一次函数表达式一般步骤

  (1)设函数表达式为y=kx+b;

  (2)将已知点的坐标代入函数表达式,解方程(组);

  (3)求出k与b的值,得到函数表达式.

  思想方法小结(1)函数方法.(2)数形结合法.

  知识规律小结(1)常数k,b对直线y=kx+b(k≠0)位置的影响.

  ①当b0时,直线与y轴的正半轴相交;

  当b=0时,直线经过原点;

  当b﹤0时,直线与y轴的负半轴相交.

  ②当k,b异号时,直线与x轴正半轴相交;

  当b=0时,直线经过原点;

  当k,b同号时,直线与x轴负半轴相交.

  ③当kO,bO时,图象经过第一、二、三象限;

  当k0,b=0时,图象经过第一、三象限;

  八下一次函数知识点总结3

  一、说教材:

  1、教材所处的地位和作用:

  《一次函数的图象》是人教版九年义务教育三年制初级中学教科书初中八年级(上册)第三节内容

  ,在此之前,学生已学习了如何画一次函数的图象基础上,这为过渡到本节的学习起着铺垫作用。本节内容可以强化学生对前面所学知识的理解,使学生对研究函数的图象和性质的基本方法有一个初步的认识与了解,为今后讨论二次函数和反比例函数的有关问题奠定基础。一次函数的图象加强了代数与几何的联系。

  2、教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)、知识目标:

  1)了解正比例函数y=kx的图象的特点。

  2)会作正比例函数的图象。

  3)理解一次函数及其图象的有关性质。

  4)能熟练地作出一次函数的图象。

  (2)能力目标:

  通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,从函数解析式到图像,从图像到解析式的探索,向学生渗透数形结合的思想方法和数学能力,同时也培养学生从特殊到一般,再从一般到特殊的辨证认识能力。

  (3)情感目标:

  通过对一次函数图象的教学,引导学生从实际出发,在课堂教学过程中,营造轻松愉快的气氛,充分调动学生的学习积极性参与到课堂中,体验探索、发现的乐趣,从而增强学生的参与意识,团结合作的精神和学习数学的兴趣。使学生了解数学知识的功能与价值,形成主动学习的态度。

  3.说教学重点、难点:

  1、从知识的联系来说,一次函数的性质是有关一次函数这一部分内容的重点,也是本章的重点内容之一,因此把一次函数的性质的探索作为本课时的教学重点。

  2、由图像归纳性质是学生首次接触,没有明确的思路,而且学生思维的全面性和深刻性也不够,对有图像归纳性质还存在相当大的困难,因此由图像探索性质是本课时的教学难点。

  二、说教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:应着重采用数形结合的教学方法。即:数形结合----列举归纳法、由特殊到一般的方法、类比法根据本课时的教学内容特点以及本班学生的实际,我采用启发式、讨论式等教学方法。在引入新课时,通过复习一次函数的图象的知识,引导启发学生观察一次函数的图象特征,分析图象的特征与一次函数的自变量、因变量的联系,归纳出一次函数的性质,使学生由感性认识上升到理性认识。在归纳一次函数的性质时,采用讨论式教学法,充分调动学生的积极性参与到对一次函数的性质的讨论中,再根据学生的讨论归纳情况进行适当的补充。整个教学过程采用愉快教学法,营造一个轻松愉快的课堂气氛,充分调动学生的情感因素,努力实现“师生互动”、“生生互动”以求达到较好的教学效果。

  三、说学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  初步培养学生用事物相互联系和发展变化的观点来分析问题,从而认识事物之间是相互联系和有规律地变化着的。培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力。要让学生由“学会”

  到“会学”。通过本节课的教学,指导学生掌握一些基本的学习方法,运用数形结合的研究方法探索函数知识;通过相互交流讨论,团结合作等方式,培养学生的自学能力和合作能力,增强学生的参与意识,使学生会运用观察、分析、比较、归纳、总结等方法探索数学知识。

  四、说学情

  本班学生整体素质不高,课堂参与、自主探究意识不强。初二学生正处在感性认识到理性认识的转型期,对一次函数的性质的理解存在很大的困难。

  八下一次函数知识点总结4

  教学程序

  1、复习回顾

  启发学生回忆:“一次函数Y=kx+b(k≠0)的图象是一条直线”,同时强调一次函数的图象的位置是由常数k、b决定,从而很自然地引入新课。

  2、新知探索

  先给出一组一次函数解析式,引导学生动手画出它们的图象,然后带出问题并引导学生观察图象,结合图象进行交流讨论,最后归纳总结一次函数的性质。

  (1)在同一直角坐标系中画出下列函数的图象

  (1)Y=2x+1,(2)y=-2x-1,(3)y=3x+2(4)y=-3x+2

  (2)引导学生带着问题观察图象、探索一次函数的性质

  问题1:从左到右,随着x增大,函数y=2x+1和y=3x+2的图象上的点的位置有什么变化?函数值y又有什么变化呢?

  问题2:同样,随着x的增大,函数y=-2x-1和y=-3x-2的图象上的点有什么变化呢?函数值呢?

  问题3:为什么会有这样的差别呢?

  3、归纳总结

  (1)当k0时,y随着x的增大而增大,这时函数的图象从左到右上升;

  (2)当k0时,y随着的x增大而减小,这时函数的图象从左到右下降。

  3、课堂练习

  课本P45的“做一做”及练习的第1、2题,这些练习是为了加深学生对一次函数的性质的理解,紧紧抓住了本课时的重点。

  4、小结

  引导学生回顾本课时所学知识,进一步加深对一次函数的性质的理解。

  反思

  在整个备课过程中,我力求做到既要备好教材又要备好学生,努力做到既紧进围绕本课时的教学重点又要结合本班学生实际。但作为以为年轻教师还缺乏教育教学经验,还有很多地方向同行学习,特别是教学语言、教学方法、课堂组织等方面更要学习。

  八下一次函数知识点总结5

  第一章分式

  1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2分式的运算

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

  3整数指数幂的加减乘除法

  4分式方程及其解法

  第二章反比例函数

  1反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2反比例函数在实际问题中的应用

  第三章勾股定理

  1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

  第四章四边形

  1平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

  数学总结

                  

文档

八下一次函数知识点总结

八下一次函数知识点总结初中二年级的数学学习是中学学习的一个重要阶段,下面是XXXX为大家整理的关于八下一次函数知识点总结,希望对您有所帮助。欢迎大家阅读参考学习!八下一次函数知识点总结1一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top