最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

(完整版)2017年新课标全国卷3高考理科数学试题及答案

来源:动视网 责编:小OO 时间:2025-10-02 18:39:20
文档

(完整版)2017年新课标全国卷3高考理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A=,B=,则AB中元素的
推荐度:
导读绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A=,B=,则AB中元素的
绝密★启用前

2017年普通高等学校招生全国统一考试(新课标Ⅲ)

理科数学

注意事项:

    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

    3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A=,B=,则AB中元素的个数为

A.3                    B.2                C.1                D.0

2.设复数z满足(1+i)z=2i,则∣z∣=

A.                B.                C.                D.2

3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 

根据该折线图,下列结论错误的是

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8月份

D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳

4.(+)(2-)5的展开式中33的系数为

A.-80                B.-40                C.40                D.80

5.已知双曲线C: (a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为

A.        B.        C.        D.

6.设函数f(x)=cos(x+),则下列结论错误的是

A.f(x)的一个周期为−2π            B.y=f(x)的图像关于直线x=对称

C.f(x+π)的一个零点为x=        D.f(x)在(,π)单调递减

7.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为

A.5                B.4                C.3            D.2

8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为

A.            B.                C.            D.

9.等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为

A.-24            B.-3                C.3            D.8

10.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为

A.                B.                C.                D.

11.已知函数有唯一零点,则a=

A.                B.                C.                D.1

12.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= +,则+的最大值为

A.3                B.2                C.                D.2

二、填空题:本题共4小题,每小题5分,共20分。

13.若,满足约束条件,则的最小值为__________.

14.设等比数列满足a1 + a2 = –1, a1 – a3 = –3,则a4 = ___________.

15.设函数则满足的x的取值范围是_________。

16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

①当直线AB与a成60°角时,AB与b成30°角;

②当直线AB与a成60°角时,AB与b成60°角;

③直线AB与a所成角的最小值为45°;

④直线AB与a所成角的最小值为60°;

其中正确的是________。(填写所有正确结论的编号)

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.

(1)求c;

(2)设D为BC边上一点,且AD AC,求△ABD的面积.

18.(12分)

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数216362574
以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值? 

19.(12分)

如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.

(1)证明:平面ACD⊥平面ABC;

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.

20.(12分)

已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

21.(12分)

已知函数 =x﹣1﹣alnx.

(1)若 ,求a的值;

(2)设m为整数,且对于任意正整数n,﹤m,求m的最小值.

(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修44:坐标系与参数方程](10分)

在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.

23.[选修45:不等式选讲](10分)

已知函数f(x)=│x+1│–│x–2│.

(1)求不等式f(x)≥1的解集;

(2)若不等式f(x)≥x2–x +m的解集非空,求m的取值范围.

绝密★启用前

2017年普通高等学校招生全国统一考试

理科数学试题正式答案

一、选择题

1.B    2.C    3.A    4.C    5.B     6.D

7.D    8.B    9.A    10.A   11.C    12.A

二、填空题

13. -1     14. -8    15.      16. ②③

三、解答题

17.解:

(1)由已知得  tanA=

在 △ABC中,由余弦定理得 

(2)有题设可得

故△ABD面积与△ACD面积的比值为

又△ABC的面积为

18.解:

(1)由题意知,所有的可能取值为200,300,500,由表格数据知

        

        .

        因此的分布列为

0.20.40.4
由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑

当时,

若最高气温不低于25,则Y=6n-4n=2n

若最高气温位于区间,则Y=6×300+2(n-300)-4n=1200-2n;

若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;

因此EY=2n×0.4+(1200-2n)×0.4+(800-2n) ×0.2=0-0.4n

当时,

若最高气温不低于20,则Y=6n-4n=2n;

若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;

因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n

所以n=300时,Y的数学期望达到最大值,最大值为520元。

19.解:

(1)由题设可得,

又是直角三角形,所以

取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO

又由于

所以

(2)

由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系,则

由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E.故

设是平面DAE的法向量,则

可取

设是平面AEC的法向量,则同理可得

所以二面角D-AE-C的余弦值为

20.解

(1)设

由可得

又=4

因此OA的斜率与OB的斜率之积为

所以OA⊥OB

故坐标原点O在圆M上.

(2)由(1)可得

故圆心M的坐标为,圆M的半径

由于圆M过点P(4,-2),因此,故

由(1)可得,

所以,解得.

当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为

当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为

21.解:(1)的定义域为.

若,因为,所以不满足题意;

若,由知,当时,;当时,,所以在单调递减,在单调递增,故x=a是在的唯一最小值点.

由于,所以当且仅当a=1时,.

故a=1

(2)由(1)知当时,

令得,从而

而,所以m的最小值为3.

22.解:

(1)消去参数t得l1的普通方程;消去参数m得l2的普通方程

设P(x,y),由题设得,消去k得.

所以C的普通方程为

(2)C的极坐标方程为

联立得.

故,从而

代入得,所以交点M的极径为.

23.解:

(1)

当时,无解;

当时,由得,,解得

当时,由解得.

所以的解集为.

(2)由得,而

且当时,.

故m的取值范围为

文档

(完整版)2017年新课标全国卷3高考理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A=,B=,则AB中元素的
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top