
【学习要点】
解圆锥曲线问题常用以下方法:
1、定义法
(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。
(2)双曲线有两种定义。第一定义中,,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定决更直接简明。
2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
(1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。
(2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有
(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.
【典型例题】
例1、(1)抛物线C:y2=4x上一点P到点A(3,4)与到准线的距离和最小,则点 P的坐标为______________
(2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。
分析:(1)A在抛物线外,如图,连PF,则,因而易发现,当A、P、F三点共线时,距离和最小。
(2)B在抛物线内,如图,作QR⊥l交于R,则当B、Q、R三点共线时,距离和最小。
解:(1)(2,)
连PF,当A、P、F三点共线时,最小,此时AF的方程为即 y=2 (x-1),代入y2=4x得P(2,2),(注:另一交点为(),它为直线AF与抛物线的另一交点,舍去)
(2)()
过Q作QR⊥l交于R,当B、Q、R三点共线时,最小,此时Q点的纵坐标为1,代入y2=4x得x=,∴Q()
点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
例2、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。
(1)的最小值为
(2)的最小值为
分析:PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。
解:(1)4-
设另一焦点为,则(-1,0)连A,P
当P是A的延长线与椭圆的交点时,取得最小值为4-。
(2)作出右准线l,作PH⊥l交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,
∴
∴
当A、P、H三点共线时,其和最小,最小值为
例3、动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程。
分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点共线(如图中的A、M、C共线,B、D、M共线)。列式的主要途径是动圆的“半径等于半径”(如图中的)。
解:如图,,
∴
∴ (*)
∴点M的轨迹为椭圆,2a=8,a=4,c=1,b2=15轨迹方程为
点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!
例4、△ABC中,B(-5,0),C(5,0),且sinC-sinB=sinA,求点A的轨迹方程。
分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R(R为外接圆半径),可转化为边长的关系。
解:sinC-sinB=sinA 2RsinC-2RsinB=·2RsinA
∴
即 (*)
∴点A的轨迹为双曲线的右支(去掉顶点)
∵2a=6,2c=10
∴a=3, c=5, b=4
所求轨迹方程为(x>3)
点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)
例5、定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。
分析:(1)可直接利用抛物线设点,如设A(x1,x12),B(x2,X22),又设AB中点为M(x0y0)用弦长公式及中点公式得出y0关于x0的函数表达式,再用函数思想求出最短距离。
(2)M到x轴的距离是一种“点线距离”,可先考虑M到准线的距离,想到用定义法。
解法一:设A(x1,x12),B(x2,x22),AB中点M(x0,y0)
①
②
③
则
由①得(x1-x2)2[1+(x1+x2)2]=9
即[(x1+x2)2-4x1x2]·[1+(x1+x2)2]=9 ④
由②、③得2x1x2=(2x0)2-2y0=4x02-2y0
代入④得 [(2x0)2-(8x02-4y0)]·[1+(2x0)2]=9
∴,
≥
当4x02+1=3 即时,此时
法二:如图,
∴, 即,
∴, 当AB经过焦点F时取得最小值。
∴M到x轴的最短距离为
点评:解法一是列出方程组,利用整体消元思想消x1,x2,从而形成y0关于x0的函数,这是一种“设而不求”的方法。而解法二充分利用了抛物线的定义,巧妙地将中点M到x轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A、B到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB是否能经过焦点F,而且点M的坐标也不能直接得出。
例6、已知椭圆过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A、B、C、D、设f(m)=,(1)求f(m),(2)求f(m)的最值。
分析:此题初看很复杂,对f(m)的结构不知如何运算,因A、B来源于“不同系统”,A在准线上,B在椭圆上,同样C在椭圆上,D在准线上,可见直接求解较繁,将这些线段“投影”到x轴上,立即可得防
此时问题已明朗化,只需用韦达定理即可。
解:(1)椭圆中,a2=m,b2=m-1,c2=1,左焦点F1(-1,0)
则BC:y=x+1,代入椭圆方程即(m-1)x2+my2-m(m-1)=0
得(m-1)x2+m(x+1)2-m2+m=0
∴(2m-1)x2+2mx+2m-m2=0
设B(x1,y1),C(x2,y2),则x1+x2=-
(2)
∴当m=5时,
当m=2时,
点评:此题因最终需求,而BC斜率已知为1,故可也用“点差法”设BC中点为M(x0,y0),通过将B、C坐标代入作差,得,将y0=x0+1,k=1代入得,∴,可见
当然,解本题的关键在于对的认识,通过线段在x轴的“投影”发现是解此题的要点。
【同步练习】
1、已知:F1,F2是双曲线的左、右焦点,过F1作直线交双曲线左支于点A、B,若,△ABF2的周长为( )
A、4a B、4a+m C、4a+2m D、4a-m
2、若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是 ( )
A、y2=-16x B、y2=-32x C、y2=16x D、y2=32x
3、已知△ABC的三边AB、BC、AC的长依次成等差数列,且,点B、C的坐标分别为(-1,0),(1,0),则顶点A的轨迹方程是( )
A、 B、
C、 D、
4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( )
A、 B、
C、 D、
5、已知双曲线上一点M的横坐标为4,则点M到左焦点的距离是
6、抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是
7、已知抛物线y2=2x的弦AB所在直线过定点p(-2,0),则弦AB中点的轨迹方程是
8、过双曲线x2-y2=4的焦点且平行于虚轴的弦长为
9、直线y=kx+1与双曲线x2-y2=1的交点个数只有一个,则k=
10、设点P是椭圆上的动点,F1,F2是椭圆的两个焦点,求sin∠F1PF2的最大值。
11、已知椭圆的中心在原点,焦点在x轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l与此椭圆相交于A、B两点,且AB中点M为(-2,1),,求直线l的方程和椭圆方程。
12、已知直线l和双曲线及其渐近线的交点从左到右依次为A、B、C、D。求证:。
参
1、C
,
∴选C
2、C 点P到F与到x+4=0等距离,P点轨迹为抛物线 p=8开口向右,则方程为y2=16x,选C
3、D ∵,且
∵点A的轨迹为椭圆在y轴右方的部分、又A、B、C三点不共线,即y≠0,故选D。
| ● | ●①-②得. ●由题意知,则上式两端同除以,有, ●将③④代入得.⑤ |
将⑥代入椭圆方程得,符合题意,为所求.
(2)将代入⑤得所求轨迹方程为: .(椭圆内部分)
(3)将代入⑤得所求轨迹方程为: .(椭圆内部分)
(4)由①+②得 : , ⑦, 将③④平方并整理得
, ⑧, , ⑨
将⑧⑨代入⑦得: , ⑩
再将代入⑩式得: , 即 .
此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.
例8 已知椭圆及直线.
(1)当为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,求直线的方程.
解:(1)把直线方程代入椭圆方程得 ,
即.,解得.
(2)设直线与椭圆的两个交点的横坐标为,,由(1)得,.
根据弦长公式得 :.解得.方程为.
说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.
这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式.
用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.
例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程.
分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.
解:如图所示,椭圆的焦点为,.
点关于直线的对称点的坐标为(-9,6),直线的方程为.
解方程组得交点的坐标为(-5,4).此时最小.
所求椭圆的长轴:,∴,又,
∴.因此,所求椭圆的方程为.
例10已知方程表示椭圆,求的取值范围.
解:由得,且.
∴满足条件的的取值范围是,且.
说明:本题易出现如下错解:由得,故的取值范围是.
出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆.
例11已知表示焦点在轴上的椭圆,求的取值范围.
分析:依据已知条件确定的三角函数的大小关系.再根据三角函数的单调性,求出的取值范围.
解:方程可化为.因为焦点在轴上,所以.
因此且从而.
说明:(1)由椭圆的标准方程知,,这是容易忽视的地方.
(2)由焦点在轴上,知,. (3)求的取值范围时,应注意题目中的条件.
例12 求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程.
分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,
可设其方程为(,),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.
解:设所求椭圆方程为(,).由和两点在椭圆上可得
即所以,.故所求的椭圆方程为.
例13 知圆,从这个圆上任意一点向轴作垂线段,求线段中点的轨迹.
分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹.
解:设点的坐标为,点的坐标为,则,.
因为在圆上,所以.
将,代入方程得.所以点的轨迹是一个椭圆.
说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为,
设已知轨迹上的点的坐标为,然后根据题目要求,使,与,建立等式关系,
从而由这些等式关系求出和代入已知的轨迹方程,就可以求出关于,的方程,
化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.
例14 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长.
分析:可以利用弦长公式求得,
也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.
解:(法1)利用直线与椭圆相交的弦长公式求解.
.因为,,所以.因为焦点在轴上,
所以椭圆方程为,左焦点,从而直线方程为.
由直线方程与椭圆方程联立得:.设,为方程两根,所以,,, 从而.
(法2)利用椭圆的定义及余弦定理求解.
由题意可知椭圆方程为,设,,则,.
在中,,即;
所以.同理在中,用余弦定理得,所以.
(法3)利用焦半径求解.
先根据直线与椭圆联立的方程求出方程的两根,,它们分别是,的横坐标.
再根据焦半径,,从而求出.
例15 椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A.4 B.2 C.8 D.
| 解:如图所示,设椭圆的另一个焦点为,由椭圆第一定义得,所以, 又因为为的中位线,所以,故答案为A. |
(2)椭圆上的点必定适合椭圆的这一定义,即,利用这个等式可以解决椭圆上的点与焦点的有关距离.
例16 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称.
分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上.
利用上述条件建立的不等式即可求得的取值范围.
解:(法1)设椭圆上,两点关于直线对称,直线与交于点.
∵的斜率,∴设直线的方程为.由方程组消去得
①。∴.于是,,
即点的坐标为.∵点在直线上,∴.解得. ②
将式②代入式①得 ③
∵,是椭圆上的两点,∴.解得.
(法2)同解法1得出,∴,
,即点坐标为.
∵,为椭圆上的两点,∴点在椭圆的内部,∴.解得.
(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为.
∵,在椭圆上,∴,.两式相减得,
即.∴.
又∵直线,∴,∴,即 ①。
又点在直线上,∴ ②。由①,②得点的坐标为.以下同解法2.
说明:涉及椭圆上两点,关于直线恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:
(1)利用直线与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程.
(2)利用弦的中点在椭圆内部,满足,将,利用参数表示,建立参数不等式.
例17 在面积为1的中,,,建立适当的坐标系,求出以、为焦点且过点的椭圆方程.
| 解:以的中点为原点,所在直线为轴建立直角坐标系,设. 则∴即∴得 |
例18 已知是直线被椭圆所截得的线段的中点,求直线的方程.
分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,直接求出, (或,)的值代入计算即得.
并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.
解:方法一:设所求直线方程为.代入椭圆方程,整理得
①
设直线与椭圆的交点为,,则、是①的两根,∴
∵为中点,∴,.∴所求直线方程为.
方法二:设直线与椭圆交点,.∵为中点,∴,.
又∵,在椭圆上,∴,两式相减得,
即.∴.∴直线方程为.
方法三:设所求直线与椭圆的一个交点为,另一个交点.
∵、在椭圆上,∴ ①。 ②
从而,在方程①-②的图形上,而过、的直线只有一条,∴直线方程为.
说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.
若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求椭圆方程?
