最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

宁夏回族自治区银川一中2021届高三上学期第一次月考数学(理)试题 Word版含答案

来源:动视网 责编:小OO 时间:2025-10-02 18:48:16
文档

宁夏回族自治区银川一中2021届高三上学期第一次月考数学(理)试题 Word版含答案

银川一中2021届高三年级第一次月考理科数学命题人:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合22(,)14yAxyx⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,1(,)4xBxyy⎧⎫⎪⎪⎛⎫==⎨⎬⎪⎝⎭⎪⎪⎩⎭,则AB的子集的个数是A.4B.3C.2D.12.函
推荐度:
导读银川一中2021届高三年级第一次月考理科数学命题人:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合22(,)14yAxyx⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,1(,)4xBxyy⎧⎫⎪⎪⎛⎫==⎨⎬⎪⎝⎭⎪⎪⎩⎭,则AB的子集的个数是A.4B.3C.2D.12.函
银川一中2021届高三年级第一次月考

理 科 数 学

命题人:

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只

有一项是符合题目要求的.

1.设集合22

(,)14y A x y x ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,1(,)4x

B x y y ⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭

,则A B 的子集的个数是 A .4 B .3 C .2 D .1

2.函数()x

x x f 2log 1

2-=的定义域为

A .()+∞,0

B .()+∞,1

C .()1,0

D .()()+∞,11,0

3.下列有关命题的说法正确的是

A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”

B .“x =-1”是“x 2-5x -6=0”的必要不充分条件

C .命题“∃x ∈R ,使得x 2+x -1<0”的否定是“∀x ∈R ,均有x 2+x -1>0”

D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题

4.埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为

A .128.5米

B .132.5米

C .136.5米

D .110.5米

5.下列函数,在定义域内单调递增且图象关于原点对称的是

A .1ln

||

y x = B .()ln(1)ln(1)f x x x =--+

C .e e ()2x x

f x -+=

D .e 1

()e 1

x x f x -=+

6.设函数f (x )=log 3

x +2

x

-a 在区间(1,2)内有零点,则实数a 的取值范围是 A .(-1,-log 32)

B .(0,log 32)

C .(log 32,1)

D .(1,log 34)

7.已知函数(),1

log ,1

x a a x f x x x ⎧≤=⎨>⎩(1a >且1a ≠),若()12f =,则

12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭

A .1-

B .1

2

-

C .

1

2

D .2

8.函数)

1(1

)(-+=x x e x e x f 的图像大致为

A B C D 9.若x x f 2)(=的反函数为)(1

x f

-,且4)()(1

1

=+--b f

a f

,则

b

a 1

1+的最小值是 A .1

B .

21 C .31 D .4

1 10.设0.51

()2

a =,0.50.3

b =,0.3log 0.2

c =,则a b c 、、的大小关系是

A .a b c >>

B .a b c <<

C .b a c <<

D .a c b <<

11.已知定义在(0,+∞)上的函数)(x f 满足0)()('<-x f x xf ,且2)2(=f ,则0)(>-x x e e f

的解集是 A .)2ln ,(-∞

B .),2(ln +∞

C .),0(2e

D .),(2+∞e

12.已知函数1,0,()ln 1.0.

x x f x x x ⎧+≤=⎨

+>⎩若方程()()f x m m =∈R 恰有三个不同的实数解

..a b c ()a b c <<,则()a b c +的取值范围是

A.]2

5,2[

B.22,e ⎡⎫--

⎪⎢⎣⎭

C.]2

5,2(

D.)2

5,2(

二、填空题:本大题共4小题,每小题5分.共20分,

13.若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有

()(2)2f x f a x b +-=,已知1

)(-=

x x

x f 为准奇函数”,则a +b =_________. 14.若函数32()3f x x tx x =-+在区间[1,4]上单调递减,则实数t 的取值范围是________; 15.已知函数)(x f 的值域为[][]0,4(2,2)x ∈-,函数()1,[2,2]g x ax x =-∈-,

1[2,2]x ∀∈-,总0[2,2]x ∃∈-,使得01()()g x f x =成立,则实数a 的取值范围为

________________.

16.定义在实数集R 上的函数()f x 满足()()20f x f x ++=,且()()4f x f x -=,

现有以下三种叙述:①8是函数()f x 的一个周期;②()f x 的图象关于直线2x =对称;③()f x 是偶函数.

其中正确的序号是 .

三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,

每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分) 17.(本小题满分12分)

已知幂函数()2

4-=m

m

f x x (实数m Z ∈)的图像关于y 轴对称,且()()23f f >.

(1)求m 的值及函数()f x 的解析式;

(2)若()()212+<-f a f a ,求实数a 的取值范围. 18.(本题满分12分)

已知函数2

1(0)()21(1)

x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩ ≤ 满足2

9()8f c =.

(1)求常数c 的值; (2)

解不等式()18

f x >

+. 19.(本小题满分12分)

已知函数1

1log )(2

-+=x ax

x f (a 为常数)是奇函数. (1)求a 的值与函数f (x )的定义域.

(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立.求实数m 的取值范围.

20.(本小题满分12分)

已知函数2

2)1()22()(x a e ax x x f x ⋅-+⋅+-=. (1)求曲线)(x f y =在(0,2)处的切线方程; (2)若3

2

=a ,证明:2)(≥x f .

21.(本小题满分12分)

已知函数ax x x a x f ++

-=2

22

1ln 2)()(R a ∈. (1) 讨论函数)(x f 的单调性;

(2)当0(二)选考题:共10分。请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分。

22.[选修4-4:坐标系与参数方程]

心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名在极坐标系Ox 中,方程ρ=a (1-sinθ)(a >0)表示的曲线C 1就是一条心形线,如图,以极轴Ox 所在的直线为x 轴,极点O 为坐标原点的

直角坐标系xOy 中,已知曲线C 2的参数方程为133

x t y t ⎧=+⎪

⎨=⎪⎩

(t 为参数)。 (1)求曲线C 2的极坐标方程;

(2)若曲线C 1与C 2相交于A 、O 、B 三点,求线段AB 的长。

23.[选修4-5:不等式选讲]

已知函数()|31||33|f x x x =-++. (1)求不等式()10f x ≥的解集; (2)正数,a b 满足2a b +=()f x a b

银川一中2021届高三第一次月考数学(理科)参

一、选择题:只有一项符合题目要求(共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案

A

D

D

C

D

C

C

C

B

C

A

B

二、填空题:(本大题共4小题,每小题5分,共20分)

13.2 14. 51

[

,)8+∞ 15、55,,22⎛⎤⎡⎫

-∞-+∞ ⎪⎥

⎢⎝

⎦⎣⎭

16、①②③ 三、解答题:

17.(1)由题意,函数()2

4-=m

m

f x x (实数m Z ∈)的图像关于y 轴对称,且()()23f f >,

所以在区间(0,)+∞为单调递减函数,所以240m m -<,解得04m <<,又由m Z ∈,且函数()2

4-=m

m

f x x (实数m Z ∈)的图像关于y 轴对称,所以24m m -为偶数,所以2m =,所

以()4

f x x -=.

(2)因为函数()4

f x x -=图象关于y 轴对称,且在区间(0,)+∞为单调递减函数,所以不等

式()()212+<-f a f a ,等价于122a a -<+且120,20a a -≠+≠,解得11

32

a -

<<或1

32

a <<, 所以实数a 的取值范围是111(,)

(,3)322

-. 18.(1)因为01c <<,所以2

c c <;由2

9()8f c =

,即3

918c +=,∴12

c = (2)由(1)得411122()211x x x f x x -⎧⎛

⎫+0<< ⎪⎪⎪⎝

⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩

,≤,由2()18f x >+得, 当1

02

x <<时,解得2142x <<; 当

112x <≤时,解得15

28

x <≤ 所以2()18f x >

+的解集为2548x x ⎧⎫⎪⎪

<<⎨⎬⎪⎪⎩⎭

19. (1)因为函数f(x)=log 2是奇函数, 所以f(-x)=-f(x),所以log 2

=-log 2

,

即log 2=log 2,

所以a=1,令

>0,解得x<-1或x>1,

所以函数的定义域为{x|x<-1或x>1}. (2)f(x)+log 2(x-1)=log 2(1+x),

当x>1时,所以x+1>2,所以log 2(1+x)>log 22=1.

因为x ∈(1,+∞),f(x)+log 2(x-1)>m 恒成立,所以m≤1,所以m 的取值范围是 (-∞,1].

20.(1)因为()()2[2(1)]e 21x f x a x ax a x '=-+⋅+-,所以()00f '=,

由导数的几何意义可知:曲线()y f x =在()0,2处的切线斜率0k =, 曲线()y f x =在()0,2处的切线方程()200y x -=⨯-,即2y =. (2)若23a =

,则()222122e 33x f x x x x ⎛

⎫=-+⋅+ ⎪⎝

⎭,

由(1)可知,()22

222e (1)e 13

333x x f x x x x x x ⎛⎫'⎡⎤=-+⋅+=-⋅+ ⎪⎣⎦⎝⎭, 设函数()(1)e 1x g x x =-⋅+,则()e x g x x '=⋅,

当(),0x ∈-∞时,()0g x '<,则()g x 在(),0-∞单调递减; 当()0,x ∈+∞时,()0g x '>,则()g x 在()0,+∞单调递增, 故()()00g x g ≥=,又()()2

3

f x x

g x '=

⋅, 故当(),0x ∈-∞时,()0f x '<,则()f x 在(),0-∞单调递减; 当()0,x ∈+∞时,()0f x '>,则()f x 在()0,+∞单调递增, 故()()02f x f ≥=.

21.解:函数)(x f 的定义域为),0(+∞,

(Ⅰ)x

a x a x x a ax x x f )

)(2(2)(22-+=-+=',

(1)当0=a 时,0)(>='x x f ,所以)(x f 在定义域为),0(+∞上单调递增;

(2)当0>a 时,令0)(='x f ,得a x 21-=(舍去),a x =2, 当x 变化时,)(x f ',)(x f 的变化情况如下:

此时,)(x f 在区间),0(a 单调递减,

在区间),(+∞a 上单调递增;

(3)当0此时,)(x f 在区间)2,0(a -单调递减,

在区间),2(+∞-a 上单调递增.

(Ⅱ)由(Ⅰ)知当0(1)当e a ≥-2,即2

e a -≤时,)(x

f 在区间],1[e 单调递减, 所以,22min 212)()]([e ea a e f x f +

+-==; (2)当e a <-<21,即2

12-<<-a e 时,)(x f 在区间)2,1(a -单调递减, 在区间),2(e a -单调递增,所以)2ln(2)2()]([2min a a a f x f --=-=,

(3)当12≤-a ,即02

1<≤-a 时,)(x f 在区间],1[e 单调递增, 所以21)1()]([min +

==a f x f .

23.(1)当1x <-时,()13336210f x x x x =---=--≥,解得2x -≤,所以2x -≤; 当113x -≤≤

时,()1333410f x x x =-++=≥,x φ∈; 当13x >时,()31336210f x x x x =-++=+≥,解得43x ≥,所以43

x ≥. 综上,不等式()10f x ≥的解集为4(,2][,)3-∞-+∞.

(2)证明:因为,a b

等价于()f x a b ≥++对任意的x ∈R 恒成立.

又因为()|31||33|4f x x x =-++≥,且2a b +=1≤,

12a b +=,当且仅当1a b ==时等号成立.

≥.

  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top