最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

七年级数学有理数与无理数易错题含答案

来源:动视网 责编:小OO 时间:2025-10-02 18:50:12
文档

七年级数学有理数与无理数易错题含答案

一、选择1.实数π是()A.整数B.分数C.有理数D.无理数【考点】无理数.【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【解答】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.2.在数0,,,﹣(﹣),,0.3,0.141041004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为()A.3B.4C.5D.6【考点】有理数.【分析】分别根据实数的分类及有理数、无理数的概念进行解答.【解答
推荐度:
导读一、选择1.实数π是()A.整数B.分数C.有理数D.无理数【考点】无理数.【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【解答】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.2.在数0,,,﹣(﹣),,0.3,0.141041004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为()A.3B.4C.5D.6【考点】有理数.【分析】分别根据实数的分类及有理数、无理数的概念进行解答.【解答
一、选择

1.实数π是(     )

A.整数    B.分数    C.有理数    D.无理数

【考点】无理数. 

【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.

【解答】解:实数π是一个无限不循环的小数.所以是无理数.

故选D.

【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.

2.在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为(     )

A.3    B.4    C.5    D.6

【考点】有理数. 

【分析】分别根据实数的分类及有理数、无理数的概念进行解答.

【解答】解:在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的是0,,﹣(﹣),,0.3,.

故选D.

【点评】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.

3.下列语句正确的是(     )

A.0是最小的数    B.最大的负数是﹣1

C.比0大的数是正数    D.最小的自然数是1

【考点】有理数. 

【分析】根据正数、自然数、负数、0的定义与特点分别对每一项进行分析即可.

【解答】解:A、没有最小的数,故本选项错误;

B、最大的负整数是﹣1,故本选项错误;

C、比0大的数是正数,故本选项正确;

D、最小的自然数是0,故本选项错误;

故选:C.

【点评】此题考查了有理数,用到的知识点是正数、自然数、负数、0的定义与特点,是一道基础题.

4.下列各数中无理数的个数是(     )

,0.12345671011…(省略的为1),0,2π.

A.1个    B.2个    C.3个    D.4个

【考点】无理数. 

【分析】由于无理数就是无限不循环小数,由此即可判定选择项.

【解答】解:下列各数中,0.12345671011…(省略的为1),0,2π.

无理数是2π,共1个.

故选A.

【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

5.下列说法中,正确的是(     )

A.有理数就是正数和负数的统称

B.零不是自然数,但是正数

C.一个有理数不是整数就是分数

D.正分数、零、负分数统称分数

【考点】有理数. 

【分析】根据有理数的定义和特点进行判断.

【解答】解:A、有理数包括正数、负数和0,故A错误;

B、零是自然数,但不是正数,故B错误;

C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确;

D、零是整数,不是分数,故D错误.

故选C.

【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.

注意整数和正数的区别,注意0是整数,但不是正数.

6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有(     )个.

A.1    B.2    C.3    D.4

【考点】有理数. 

【分析】利用分数的定义判断即可.

【解答】解:在,3.14,0,0.313 113 111.…,0.43五个数中分数有3.14,0.43,

故选B.

【点评】此题考查了实数,熟练掌握分数的定义是解本题的关键.

二、填空

7.最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0.

【考点】有理数. 

【分析】根据正整数的定义,可得答案;

根据负整数的定义,可得答案;

根据非负数的定义,可得答案.

【解答】解:最小的正整数是 1,最大的负整数是﹣1,最小的非负整数是 0,

故答案为:1,﹣1,0.

【点评】本题考查了有理数,利用了有理数的分类,注意没有最小的整数,没有最大的整数.

8.有理数中.是整数而不是正数的数是0和负整数;是整数而不是负数的数是0和正整数.

【考点】有理数. 

【专题】常规题型.

【分析】解答本题的关键是理解掌握有理数定义,以及有理数包括整数和分数,零既不是正数也不是负数.

【解答】解:零既不是正数也不是负数

故在理数中,是整数而不是正数的数是 (0和负整数);

是整数而不是负数的数是:(0和正整数).

【点评】本题主要考查的是有理数的定义以及零既不是正数也不是负数,题型比较容易.

9.若一个正方形的面积为5,则其边长可能是无理数.

【考点】算术平方根;无理数. 

【分析】直接利用正方形面积公式以及算术平方根和无理数的概念得出即可.

【解答】解:∵一个正方形的面积为5,

∴其边长是:,它是无理数.

故答案为:无理.

【点评】此题主要考查了正方形面积以及算术平方根和无理数的概念,正确求出正方形边长是解题关键.

10.给出下列数:﹣18,,3.1416,0,2001,﹣,﹣0.14,95%,其中负数有﹣18,﹣,﹣0.14,整数有﹣18,0,2001,负分数有﹣0.14.

【考点】有理数. 

【分析】根据小于零的数是负数,可得答案;

根据整数的定义,可得答案;

根据小于零的分数是负分数,可得答案.

【解答】解:负数有﹣18,﹣,﹣0.14,整数有﹣18,0,2001,负分数有﹣0.14,

故答案为:﹣18,﹣,﹣0.14;﹣18,0,2001;﹣0.14.

【点评】本题考查了有理数,利用了有理数的分类,注意分数的分子分母都是整数.

11.有六个位:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=6.

【考点】无理数. 

【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定无理数x的值,根据整数的定义非负数的定义即可判定y、z的值,然后即可求解.

【解答】解:无理数有:﹣2π,0.1020020002…共2个,则x=2;

没有整数:则y=0;

非负数有:0.123,3.1416,,0.1020020002…共4个;

则z=4.

则x+y+z=6.

【点评】本题主要考查实数的分类.无理数和有理数统称实数.有一定的综合性.

12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.

(1)1,﹣2,4,﹣8,16,﹣32.,﹣128,256…

(2)4,3,2,1,0,﹣1,﹣2.﹣3,﹣4,﹣5…

(3)1,2,﹣3,4,5,﹣6,7,8,﹣9,10,11,﹣12…

【考点】规律型:数字的变化类. 

【分析】(1)利用已知数是(﹣2)的次数变化得到,进而得出答案;

(2)利用已知数据可得出后面是连续的负数进而得出答案;

(3)利用已知数绝对值是连续正整数,每三个中最后一个是负数,进而得出答案.

【解答】解:(1)∵1,(﹣2)1,(﹣2)2=4,(﹣2)3=﹣8,(﹣2)4=16,(﹣2)5=﹣32.

∴(﹣2)6=,(﹣2)7=﹣128,(﹣2)8=256;

故答案为:,﹣128,256;

(2)∵4,3,2,1,0,﹣1,﹣2,

∴后面三个数是:﹣3,﹣4,﹣5;

故答案为:﹣3,﹣4,﹣5;

(3)∵1,2,﹣3,4,5,﹣6,7,8,﹣9,

∴后面三个数是:10,11,﹣12.

故答案为:10,11,﹣12.

【点评】此题主要考查了数字变化规律,根据题意得出数字变化规律是解题关键.

三、解答

13.有一面积为5π的圆的半径为x,x是有理数吗?说说你的理由.

【考点】实数. 

【分析】根据圆的面积公式得出圆的半径长,进而得出答案.

【解答】解:x不是有理数,

理由:因为x2=5,

故x=,则x既不是整数,也不是分数,而是无限不循环小数.

【点评】此题主要考查了实数有关定义,得出半径长是解题关键.

14.把下列各数填在相应的大括号内:

,0,,314,﹣,,,﹣0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.

正数集合:{                             …};

负数集合:{                             …};

有理数集合:{                             …};

无理数集合:{                             …}.

【考点】实数. 

【分析】分别利用正数以及负数、有理数和无理数的定义分析得出即可.

【解答】解:正数集合:{,,314,,,8,1.121 221 222 1…(两个1之间依次多一个2),0.211,201,999,…};

负数集合:{﹣,一0.55,…};

有理数集合:{,0,314,,,﹣,﹣0.55,8,0.2111,201,999,…};

无理数集合:{,1,121 221 222 1…(两个1之间依次多一个2)…}.

【点评】此题主要考查了实数有关定义,正确把握相关定义是解题关键.

15.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={﹣2,﹣3,﹣8,6,7},B={﹣3,﹣5,1,2,6},C={﹣1,﹣3,﹣8,2,5},请把这些数填在图中相应的位置.

【考点】有理数. 

【分析】根据每个集合中的元素,可得答案.

【解答】解:如图所示.

【点评】本意考察了有理数,利用了韦恩图法表示集合,注意各集合的公共元素.

16.“十•一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).

日期10月1日

10月2日

10月3日

10月4日

10月5日

10月6日

10月7日

人数变化

单位:万人

+1.6+0.8+0.4﹣0.4

﹣0.8

+0.2﹣1.2

(1)9月30日外出旅游人数记为a,用a的代数式表示10月2日外出旅游的人数;

(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?

【考点】列代数式. 

【专题】应用题.

【分析】(1)10月2日外出旅游的人数=9月30日外出旅游人数+10月1日增加的人数+10月2日增加的人数.

(2)易得最多的是10月3日,最少的是10月7日.算出的人数相减即可求得相差人数.把10月3日的人数=3即可算出9月30日出去旅游的人数有多少.

【解答】解:(1)由题意可知10月2日外出旅游的人数为:a+1.6+0.8=a+2.4(万人);

(2)最多的是10月3日,人数为a+1.6+0.8+0.4=a+2.8(万人).

最少的是10月7日,人数为a+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2=a+0.6(万人).

它们相差为a+2.8﹣a﹣0.6=2.2万人.

如果最多一天有出游人数3万人,即a+2.8=3,a=0.2万人,故9月30日出去旅游的人数有0.2万人.

【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,列出代数式.

文档

七年级数学有理数与无理数易错题含答案

一、选择1.实数π是()A.整数B.分数C.有理数D.无理数【考点】无理数.【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【解答】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.2.在数0,,,﹣(﹣),,0.3,0.141041004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为()A.3B.4C.5D.6【考点】有理数.【分析】分别根据实数的分类及有理数、无理数的概念进行解答.【解答
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top