最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

函数的单调性教学教案(优秀)

来源:动视网 责编:小OO 时间:2025-10-02 19:20:09
文档

函数的单调性教学教案(优秀)

课题:函数的单调性授课教师:王青【教学目标】1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲
推荐度:
导读课题:函数的单调性授课教师:王青【教学目标】1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲
课题:函数的单调性

授课教师:王青

【教学目标】

1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。

2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。

3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。

【教学重点】函数单调性的概念、判断及证明.

【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.

【教学方法】教师启发讲授,学生探究学习.

【使用教具】多媒体教学

【教学过程】

一、创设情境,引入课题

1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.

引导学生识图,捕捉信息,启发学生思考.

问题:

(1)当天的最高温度、最低温度以及何时达到;

(3)哪些时段温度升高?哪些时段温度降低?

在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念

对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容.

1.借助图象,直观感知

问题1:分别作出函数,,的图象,并且思考

(1)函数的图象从左至右是上升还是下降,在区间_____上的值随x的增大而_______

(2)函数的图象从左至右是上升还是下降,在区间_____上的值随x的增大而_______

(3)函数在区间_____上,的值随x的增大而增大

(4)函数在区间_____上,的值随x的增大而减小

〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.

2.抽象思维,形成概念

问题:你能用数学符号语言描述第(3)(4)题吗?

任取,因为,即,所以

任意的, (),<,则

任意的, (),<,则

师生共同探究,得出增函数和减函数的定义:

增函数定义:

如果函数y=f(x)在数集I上满足:随着自变量x的增大,因变量y也增大,那么称y=f(x)在数集I上单调增,也称y=f(x)在数集I上是增函数

数学语言描述:

如果函数y=f(x)在数集I上满足:对于任意的,∈I,当<时,f()同学们根据增函数的定义给出减函数的定义

〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.

判断题:

①若函数.

通过判断题,强调三点:

通过判断题,强调三点:

单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).

函数的单调性就是函数的增减性

〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.

有了函数的单调性这一概念就有如下概念:

如果函数在某区间上是增函数,就称该区间为函数的单调增区间。

如果函数在某区间上是减函数,就称该区间为函数的单调减区间。

练一练

下图为函数的图像,找出它的单调区间以及在每个区间上是增函数还是减函数。

三、掌握证法,适当延展

例1、证明函数在R上是增函数.

1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.

证明:任取,       设元

求差

          变形  

断号

∴即定论

∴函数在上是增函数.     

2.归纳解题步骤

引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.

练习:证明函数在上是增函数.

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

1.小结

(1)函数单调性的定义

(2)证明函数单调性的步骤:设元、作差、变形、断号、定论.

2.作业

书面作业:《学习指导用书》P53-P54

文档

函数的单调性教学教案(优秀)

课题:函数的单调性授课教师:王青【教学目标】1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top