
一、四年级数学上册应用题解答题
1.一间房子长18米,宽15米,用边长是3分米的方砖铺地,需要多少块?
2.王老师带800元钱去商店买体育用品,买足球用去320元,剩下的钱用来买排球。可以买多少个排球?
3.提出问题并解答。
一盒钢笔有12支,买一盒这样的钢笔需要360元,张老师准备买15盒这样的钢笔,他一共带了6000元。以下四组选取了已知条件中的全部信息或部分信息。
第一组:12支,360元,15盒,6000元
第二组:360元,15盒,6000元
第三组:12支,360元,15盒
第四组:12支,15盒
(1)如果要解决“张老师买回15盒钢笔后还剩多少元?”这个问题,应该选择()组信息。这时信息够用且没有多余。请将解答过程写下来。
(2)如果选择第四组信息,可以解决一个什么问题?写出问题并写出解答过程。
4.商店以14元/个的价格购进一批帽子,然后以18元/个的价格出售。还剩下10个帽子时,不但收回了成本,还获利60元,这家商店原来共购进帽子多少个?
5.兄弟两人早晨7时同时从家里出发去上学,兄每分钟走100米,弟每分钟走60米,兄到了学校后休息了5分钟才发现英语书没带,立即回家,途中7时25分与弟相遇,学校离家有多远?
6.甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.
7.蓝天小学四年级师生共有204人,准备包车去研学。租车的价格是25元/人。请问,带队老师带5000元钱够吗?
8.爷爷家一块长方形菜地的面积360平方米,宽9米,爷爷要把这块菜地的宽增加到36米,长不变。扩大后菜地的面积是多少平方米?
9.丽丽家的厨房铺地砖,有两种方案。方案一:铺边长是3分米的正方形地砖,需要100块。方案二:铺长3分米、宽2分米的长方形地砖。
(1)丽丽家厨房的面积是多少平方分米?合多少平方米?
(2)若采用第二种方案,则需要多少块长方形地砖?
(3)哪种方案比较便宜?10.汽车从A城开往B城,每小时行驶80千米,要3小时才能到达。返回时,只需2小时就能到达。返回时汽车每小时行驶多少千米?
11.王叔叔从A地出发,以每小时48千米的速度去B地送货,用了5小时到达。原路返时用了4小时,返回时平均每小时行多少千米?
12.一辆货车载满货物从甲城开往乙城用了8小时,每小时行45千米,从乙城返回甲城只用了6小时,这辆货车返回时平均每小时行多少千米?
13.一辆洒水车,它的洒水宽度是14米,每分钟行驶200米。一条路长3500米,宽14米,如果两辆这种洒水车同时工作,10分钟后能给这条路的表面都散上水吗?
14.有一堆黄沙,先运走18吨,剩下的用7辆车运完,每车运6吨,这堆黄沙共有多少吨?
15.爸爸带小亮去爬山。从山脚到山顶的路程有2500米,平均每分钟走75米,已经走了30分钟。现在离山顶还有多少米?
16.一只山雀5天大约能吃800只害虫,照这样计算,一只山雀一个月大约能吃多少只害虫?(一个月按30天计算.)
17.一辆汽车从A城出发经B城到C城用了4小时。平均每小时行多少千米?
18.王华家到学校2400米,王华从家上学,每分钟走80米,她走了25分钟。这时她离学校还有多少米?
19.四年级师生去看儿童剧,去了108名学生和2位老师。学生票每人12元,成人票每人18元,他们买票共需要多少钱?
20.下图是挂在墙壁上“安全出口”的指示牌,请你验证一下,挂歪了吗?你是如何验证的?请动手验证,并叙述结论。
21.下是平行四边形。
(1)画一画:画出指定底边上的高。
(2)量一量:1∠=( )度,
2∠=( )度。
(3)想一想:请再量一量3∠和4∠,你能发现什么?把你的发现写在下面横线上。 ________________________________________
22.用符号表示上底AD 和下底BC 的位置关系;再在梯形中画出一条高,将这个梯形分成一个三角形和一个梯形。
23.在下面的格子图中,按要求进行操作(方格的边长是1厘米)。
(1)图中1∠=( )°,这是一个( )角。
(2)以给定的两条线段作为相邻的边,画一个平行四边形。
(3)在画成的平行四边形中以标注的边为底,作一条高。
(4)请画一个上底为4厘米,下底为7厘米,高为5厘米的梯形。
(5)在画成的梯形中画一条线段,把其分成一个平行四边形和一个梯形。
24.李叔叔靠墙用篱笆围成了一个平行四边形的花坛。(如图)
26.一个等腰梯形,下底比上底长10厘米,上底和一条腰长的和是86厘米,这个梯形的周长是多少厘米?
27.一个等腰梯形的周长是58厘米,一条腰长13厘米,上底是10厘米,下底是多少厘米?
28.张大伯家附近有一块长方形菜地,一条公路,如图:
(1)这块长方形菜地的面积是多少平方米?
(2)张大伯想在长方形菜地里用篱笆围一块最大的正方形地种西红柿,其余的种白菜.张大伯至少需要准备多长的篱笆?(先在图中画出来,再列式解答.)
(3)如果要从张大伯家修一条小路通往公路,怎样修最近?请在图中画出来,并说明理由.
29.如图,ABCD是一个平行四边形.
(1)量一量,∠1=________°,它是一个_____角.
(2)AD∥_____,AE⊥_____ .(3)CD地边上的高是_____米,BC底边上的高是_____米.
(4)以F点为垂足画出平行四边形ABCD的一条高.
30.小点、小蕊和小红坐三辆不同的车上午7点从宿迁出发去苏州。到上午10点时,小点坐的车行了240千米,小蕊坐的车行了225千米,小红坐的车行了255千米。
(1)小蕊坐的车平均每小时比小红坐的车慢多少千米?
(2)照这样的速度,小点坐的车大约还要4个小时就可以到苏州了。宿迁到苏州的路程大约有多远?
(3)自己再提一个问题,并解答。
31.王芳在学校图书馆借阅《少儿百科》一书,原计划每天看40页,15天看完。图书馆整理图书要求提前归还,必须10天看完,那么她平均每天要看多少页?
32.社区有一块绿地(如图),现在要进行改造。改造后绿地的长增加到36米,宽不变,扩大后绿地的面积是多少?
33.快车和慢车从甲地开往乙地,快车每小时行60千米,慢车每小时行30千米。如果慢车比快车早出发3小时,当快车追上慢车时,快车行了多远?
34.超市里的笔记本搞促销活动,买10本送1本,一本笔记本卖12元,带了273元,最多可以买多少本笔记本?
35.银座家居广场有一款餐桌售价400元,配套餐椅每把120元.如果餐桌与餐椅成套购买(一张餐桌配四把餐椅为一套),可享受半价优惠.
36.一辆汽车从甲地到乙地,去时平均每小时行120千米,14小时到达,原路返回时平均速度为80千米/时,求全程的平均速度.
37.小马虎在计算有余数的除法时,把被除数108看成了708,结果商增加了40,而余数正好相同,这道除法算式的除数和余数各是多少?
38.一个长方形的面积是495平方米,宽是15米。当长不变,将宽延长,使其变成一个正方形,面积增加了多少平方米?
39.40.甲、乙两车分别从A,B两城相对同时开出,甲车每小时行78千米,乙车每小时行67千米,两车在距A,B两城中点66千米处相遇.A,B两城相距的路程是多少千米?41.小马虎在计算一道数学题时,把除数54看成了45,得到商为21,余数是27,你能算出正确的商吗?试着算一算。
42.探究题。
佳佳观察下面的三组算式,发现了一个规律:
(1)佳佳想再举一组算式看看自己的发现对不对,请写出他可以举的算式:
(2)请用你喜欢的方式清楚地表示出佳佳发现的规律。
43.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。甲车行几小时后与乙车相遇?
44.某游乐园的门票是每张80元,如果去的人多,购买团体票比较合算,四年级有45人去游玩,购买团体票共付了3240元,这样每人便宜了多少元?
45.文体用品店购进2800个乒乓球,每25个装一袋,每4袋装一盒,准备30个盒子够用吗?
46.某服装店的上衣进行促销活动,有以下两种方案,李叔叔现有288元,最多可以买多少件?还剩多少元?
方案一:39元/件方案二:59元/两件
47.李叔叔骑车旅行,他从A地到B地用时2小时。照这样计算,他从B地到C地大约需要多少小时?
48.爸爸出差了,妈妈生病了,明明放学回家后帮妈妈做家务,明明是按照以下顺序做的:扫地(5分钟)→淘米(1分钟)→洗菜(9分钟)→打开炉子(1分钟)→煮饭(18分钟)→炒菜(7分钟)一共花了41分钟,妈妈平时没有用这么长时间,请你帮明明设计一个花费时间最少的做家务顺序。
49.阳光小学要购买一些小型分类垃圾桶放在班级中使用,要购买25组这样的垃圾桶,怎
样购买最划算?需要多少钱?
50.某校四年级师生共有480人,如果这些人要租车去郊游,那么请你设计租车方案,怎样租车最省钱?
51.金山旅行社推出“莲花山景区一日游”的两种出游价格方案。成人4人,儿童6人,选哪个方案买票比较合算?请通过计算简单说明理由。
方案一:
成人120元/人儿童50元/人
方案二:
团体10人以上(包含10人),
100元/人
52.李叔叔购买7个香肠面包,3个牛油面包,选哪种方案更省钱?最少用多少钱可以买到这些面包?(要求用综合算式解答)
方案一:香肠面包6元/个,牛油面包4元/个。
方案二:购买10个以上(含10个,不分种类)5元/个。
53.六一儿童节老师给同学们去购买饮料,同一种饮料有两种包装。大箱:每箱12瓶,共36元;小箱:每箱8瓶,共26元。要买136瓶饮料,怎么买最省钱?最少需要多少钱?54.某班45名同学去划船,租一条大船需100元,可坐六人,一条小船80元,可坐四人,请设计一种租船方案,使租金最少。
55.到文具店为同学们买奖品,一种圆珠笔的单价是4元/支.56.一个长200米、宽50米的长方形果园.如果长与宽都扩大到原来的2倍,那么果园的面积增加了多少公顷?
57.猫妈妈带着小花猫去河边钓鱼,共钓了16条。猫妈妈见小花猫钓的少,怕它心情不好,就给小花猫2条,这时猫妈妈的条数正好是小花猫的3倍,问猫妈妈和小花猫各钓了多少条鱼?
58.向阳小学要为三、四年级的学生每人买一本价格为12元的作文辅导书。已知三年级有145人,四年级有155人,两个年级一共需要多少元?
59.28名老师带着6名同学去春游,每辆大车可坐45人,租金900元,每辆小车可坐18人,租金500元,怎样租车最省钱?
60.宏远学校新购进3840册图书,要分给全校的七至九年级,每个年级有8个班,平均每班分多少本?
【参】***试卷处理标记,请不要删除
一、四年级数学上册应用题解答题
1.3000块
【分析】
首先根据长方形的面积公式、正方形的面积公式,分别求出一间房子的面积和每块方砖的面积,然后用房子的面积除以每块方砖的面积即可。
【详解】
18米=180分米
15米=150分米
180×150÷(3×3)
=180×150÷9
=27000÷9
=3000(块)
答:需要3000块。
【点睛】
本题主要考查了学生对长方形和正方形面积公式的掌握,注意单位要统一。
2.15个
【分析】
先求出买排球的总价,再根据总价÷单价数量=数量,求出排球的数量。
【详解】
800-320=480(元)
480÷32=15(个)
答:可以买15个排球。
【点睛】据带的钱-买足球的总价=买排球的总价,总价 单价数量=数量解答即可。
3.(1)第二组;解题过程见详解。
(2)张老师一共买了多少支钢笔?;180支;
【分析】
(1)计算张老师买回15盒钢笔还剩多少钱,需要知道张老师带的总钱数,需要数量和单价,数量是15盒,单价是360元,据此选择。
(2)第四组数据12表示每盒是数量,15表示15盒,据此提问15盒一共多少支钢笔比较合适。
【详解】
(1)选择:第二组;
360×15=5400(元);
6000-5400=600(元)
答:张老师买回15盒钢笔后还剩600元。
(2)张老师一共买了多少支钢笔?
12×15=180(支)
答:张老师一共买略180支钢笔。
【点睛】
本题考查信息选择和数值计算的应用,掌握分析数据的能力和总价=数量×单价,是解题的关键。
4.60个
【分析】
卖出的帽子收回了成本还赚了60元,还剩10个帽子没卖出去,相当于赚了10个帽子和60元钱,所以14×10=140(元),140+60=200(元),即赚了200元,每只帽子赚钱:18-14=4(元),卖出200÷4=50(只),还剩10个,故50+10=60(个)。
【详解】
(14×10+60)÷(18-14)+10
=(140+60)÷4+10
=200÷4+10
=50+10
=60(个)
答:这家商店原来共购进帽子60个。
【点睛】
还剩下10个帽子时,不但收回了成本,还获利60元,正确理解这句话,准确求出一共赚了多少钱是解答此题的关键。
5.1750米
【分析】
根据题意,可知弟弟共走了25分钟,哥哥共走了20分钟,兄弟二人一共走了从家到学校路程的2倍,进而用路程的2倍除以2问题得解。
【详解】弟弟共走了:7时25分-7时=25分
哥哥共走了:25-5=20(分)
学校离家:(100×20+60×25)÷2
=(2000+1500)÷2
=3500÷2
=1750(米)
答:学校离家有1750米。
【点睛】
解决此题关键是先求出兄弟两人各走得时间和一共走得路程,进而问题得解。
6.260千米
【详解】
画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线)
可以发现第一次相遇意味着两车行了一个B、A两地间距离,第二次相遇意味着两车共行了三个B、A两地间的距离.当甲、乙两车共行了一个B、A两地间的距离时,甲车行了95千米,当它们共行三个B、A两地间的距离时,甲车就行了3个95千米,即(千米),而这285千米比一个B、A两地间的距离多25千米,可得:
(千米).
7.不够
【分析】
根据乘法的意义,用每人的价格乘总人数,求出实际需要的总钱数,然后和带队老师带的5000元钱比较大小即可得出答案。
【详解】
204×25=5100(元)
5100元>5000元
答:带队老师带5000元钱不够。
【点睛】
本题主要考查了学生根据乘法的意义列式解答问题的能力;解答依据是:求几个相同加数的和是多少,用乘法计算。
8.1440平方米
【分析】
用现在的宽除以原来的宽,再乘原来的面积即可解答。
【详解】
36÷9×360
=4×360=1440(平方米)
答:扩大后菜地的面积是1440平方米。
【点睛】
现在的宽是原来宽的多少倍,现在的面积就是原来的多少倍。
9.(1)900平方分米;9平方米
(2)150块
(3)方案二
【分析】
(1)先根据方案一计算出厨房的面积,用3乘3计算出一块正方形地砖的面积,然后用一块正方形地砖的面积乘100即可,然后将单位化成平方米,用计算出的面积除以100即可。
(2)先用3乘2计算出一块长方形地砖的面积,然后用厨房的面积除以一块长方形地砖的面积即可。
(3)用一块正方形地砖的价钱乘正方形地砖的块数计算出方案一需要的钱;再用一块长方形地砖的价钱乘长方形地砖的块数计算出方案二需要的钱,然后进行比较。
【详解】
(1)3×3=9(平方分米)
9×100=900(平方分米)
900平方分米=9平方米
答:丽丽家厨房的面积是900平方分米,合9平方米。
(2)3×2=6(平方分米)
900÷6=150(块)
答:若采用第二种方案,则需要150块长方形地砖。
(3)23×100=2300(块)
15×150=2250(元)
2250<2300,方案二便宜
答:方案二比较便宜。
【点睛】
此题考查的是长方形面积的实际运用,先根据正方形地砖的边长和需要的块数计算出厨房的面积是解答此题的关键。
10.120千米
【分析】
根据路程=速度×时间,求出A城到B城的距离。再根据速度=路程÷时间,求出汽车返回时的速度。
【详解】
80×3÷2
=240÷2
=120(千米)
答:返回时汽车每小时行驶120千米。
【点睛】
本题考查行程问题,关键是熟记公式路程=速度×时间,速度=路程÷时间。
11.60千米
【分析】
由“以每小时48千米的速度去B地送货,用了5小时到达”可根据关系式:速度×时间=路程,求出从A、B两地的距离;要求王叔叔返回时的速度,用求出的路程除以返回的时间,列式解答即可。
【详解】
48×5÷4
=240÷4
=60(千米)
答:返回时平均每小时行60千米。
【点睛】
此题运用了关系式:速度×时间=路程,路程÷时间=速度,解答此题的关键是求出两地之间的距离是多少。
12.60千米
【分析】
首先用从甲城开往乙城用的时间乘货车开往乙城的速度从而计算出甲乙两城之间的距离,然后用距离除以返回用的时间就是返回时的速度。
【详解】
45×8=360(千米)
360÷6=60(千米)
答:这辆货车返回时平均每小时行60千米。
【点睛】
此题考查的是普通的行程问题,先计算出甲乙两城的距离是解答此题的关键。
13.能
【分析】
两辆洒水车同时工作,则每小时可洒水200×2=400(米),乘工作时间,与3500米比较即可。
【详解】
200×2×10
=400×10
=4000(米)
4000米>3500米
答:10分钟后能给这条路的表面都散上水。
【点睛】
此题考查了三位数与两位数的乘法计算,找准数量关系认真解答即可。
14.60吨
【解析】
【详解】
18+6×7
=18+42
=60(吨)
答:这堆黄沙共有60吨。
15.250米
【分析】
根据路程=速度×时间,让已经的走的时间30分钟乘速度每分钟75米,求解出已经走的路程,再让总路程2500米减去已经走的路程即可解答。
【详解】
75×30=2250(米)
2500-2250=250(米)
答:现在离山顶还有250米。
【点睛】
本题考查简单的行程问题,掌握路程=速度×时间,是解题的关键。
16.4800只
【详解】
一只山雀一个月吃害虫的数量:800÷5×30=160×30=4800(只)
答:一只山雀一个月大约能吃4800只害虫.
17.60千米
【分析】
根据题图可知,从A城出发经B城到C城,这辆汽车共行驶了130+110km。再除以行驶时间,即可求出行驶的速度。
【详解】
(130+110)÷4
=240÷4
=60(km)
答:平均每小时行60千米。
【点睛】
本题考查行程问题,灵活运用公式速度=路程÷时间解决问题。解决本题的关键是求出汽车行驶的路程。
18.400米
【分析】
首先根据路程=速度×时间,求出王华25分钟已走的路程是多少米;然后用王华家到学校的总路程减去已走的路程,即可解答。
【详解】
2400-80×25
=2400-2000
=400(米)答:这时她离学校还有400米。
【点睛】
此题主要考查了行程问题中速度、时间和路程的关系,解答此题的关键是先求出25分钟已走的路程是多少米。
19.1332元
【分析】
学生数乘学生票价得学生票需要的钱,老师数乘成人票价得老师需要的票钱,然后相加即可解答。
【详解】
12×108+18×2
=1296+36
=1332(元)
答:他们买票共需要1332元钱。
【点睛】
熟练掌握总价、单价和数量三者之间的关系是解答本题的关键。
20.见详解
【分析】
要使指示牌挂正了,则指示牌的长应和墙壁所在的线段是互相平行的。根据平行线的性质可知,平行线之间的距离处处相等。则只需要量出指示牌与墙壁之间的两条绳子的长度,若两条绳子一样长,则指示牌挂正了。若两条绳子不一样长,则指示牌挂歪了。
【详解】
通过测量可知,指示牌与墙壁之间的两条绳子不一样长,则指示牌挂歪了。
【点睛】
两直线互相平行时,从一条直线上任意一点向另一条直线作垂线,所得的平行线间的垂直线段的长度,叫做平行线间的距离。平行线之间的距离处处相等。
21.(1)见详解
(2)60;120;
(3)∠1=∠3,∠2=∠4;平行四边形相对的两个角的角度相等。
【分析】
(1)从平行四边形的底边的对边上任意一点都可以向底边作垂直线段,即是平行四边形的高;
(2)将量角器的中心与顶点重合,0刻度线与角的一条边重合,另一条边对应的量角器的刻度就是这个角的度数;
(3)使用量角器量出∠3与∠4的度数;即可解答。
【详解】
(1)(画法不唯一)
(2)∠1=60°,∠2=120°;
(3)∠1=∠3=60°,∠2=∠4=120°,平行四边形相对的两个角的度数相等。
【点睛】
本题考查平行四边形的特征与量角器的使用方法,关键掌握作高用虚线表示并标垂直符号。
22.见详解
【分析】
观察题图可知,四边形ABCD是一个梯形,则线段AD和BC平行。要将这个梯形分成一个三角形和一个梯形,则过A点向BC作垂线,这条垂线即为所求。
【详解】
AD // BC
【点睛】
只有一组对边平行的四边形叫做梯形。从梯形一条底边上的一点到它对边的垂直线段叫做梯形的高。
23.(1)125°;钝
(2)见详解
(3)见详解
(4)见详解
(5)见详解
【分析】
(1)先用量角量出角的度数,再根据角的分类确定是什么角。
(2)过线段的端点作另一边的平行线段,线段的长度与另一边相等,然后把两条平行线段的另外两个端点连接起来即可。
(3)过与底边平行的边上一点作底边的垂线段即为底边上的高。
(4)画两条平行线段,上面一条为4个格子宽,下面一条为7个格子宽,两条线段相距5个格子宽,把两条线段对应端点连接起来即可。
(5)过梯形上底上一点(端点除外)作一条腰的平行线交下底于一点,这条线段就把其分成一个平行四边形和一个梯形。
【详解】(1)图中1
∠=125°,这是一个钝角。
(2)(3)(4)(5)见下图:
【点睛】
熟练掌握角的度量、平行四边形画法、垂线段的画法及梯形的画法是解答本题的关键。24.10米
【分析】
靠墙围篱笆时,靠墙的那边不围篱笆,只有三边围篱笆,篱笆的总长=平行四边形三条边的总长,据此代入解答即可。
【详解】
4+3+3
=7+3
=10(米)
答:需要准备10米长的篱笆。
【点睛】
靠墙围篱笆问题靠墙的那边不围篱笆。
25.60厘米 90厘米 90厘米
【详解】
略
26.182厘米
【详解】
86+86+10=182(厘米)
27.22厘米
【详解】
58-13×2-10=22(厘米)
答:下底是22厘米。
28.(1)209平方米;(2)38米;(3)作出张大伯家到公路的垂线段,点到直线的距离垂直线段最短.
【解析】
【详解】
(1)220分米=22米,95分米=9.5米,
22×9.5=209(平方米)
答:这块长方形菜地的面积是209平方米.
(2)9.5×4=38(米)
答:张大伯至少需要准备38米长的篱笆.
(3)如图所示,只要作出张大伯家到公路的垂线段,这条小路就最短;
29.(1)60,锐
(2)BC,CD
(3)5,3
(4)
【详解】
略
30.(1)10千米
(2)560千米
(3)问题:小蕊坐的车平均每小时比小点坐的车慢多少千米?;5千米
【分析】
(1)首先根据路程÷时间=速度,分别求出小蕊和小红坐的车的速度各是多少;然后求出她们坐的车的速度之差,即可求出小蕊坐的车平均每小时比小红坐的车慢多少千米。(2)首先根据速度×时间=路程,用小点坐的车的速度乘还要行驶的时间,求出还要行驶的路程是多少,再用它加上240,求出宿迁到苏州的路程大约有多远即可。
(3)我还能提出问题:小蕊坐的车平均每小时比小点坐的车慢多少千米?用小蕊坐的车的速度减去小点坐的车的平均速度即可。
【详解】
10时-7时=3时
(1)255÷3-225÷3
=85-75
=10(千米)
答:小蕊坐的车平均每小时比小红坐的车慢10千米。
(2)240÷3×4+240
=80×4+240
=320+240
=560(千米)
答:宿迁到苏州的路程大约有560千米。
(3)问题:小蕊坐的车平均每小时比小点坐的车慢多少千米?
240÷3-225÷3
=80-75
=5(千米)
答:小蕊坐的车平均每小时比小点坐的车慢5千米。(答案不唯一)
【点睛】
此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是分别求出三人坐的车的速度各是多少。
31.60页
【分析】
用原计划每天看书页数乘看书天数,求出这本书的总页数。再除以实际看书天数,求出实际平均每天看书页数。
【详解】
40×15÷10
=600÷10
=60(页)
答:她平均每天要看60页。
【点睛】
本题考查归总问题,先求总量,再求单一量。
32.504平方米
【分析】
方法一:已知原来的长是18米,面积是252平方米,根据长方形的面积公式:长方形的面积=长×宽,由此可以求出原来的宽。然后用增加后的总长×宽即可求出扩大后绿地的面积。
方法二:由于宽不变,长增加到36米,也就是长扩大了2倍,面积也扩大2倍,直接用原来的面积乘2即可。
【详解】
方法一:
252÷18×36
=14×36
=504(平方米)
答:扩大后绿地的面积是504平方米。
方法二:
252×(36÷18)
=252×2
=504(平方米)
答:扩大后绿地的面积是504平方米。
【点睛】
此题主要考查长方形面积公式的灵活运用。
33.180千米
【分析】
先根据路程=速度×时间,求出慢车3小时行驶的路程。快车每小时行60千米,慢车每小时行30千米,则快车每小时比慢车多行驶60-30千米。根据时间=路程÷速度,求出快车追上慢车时行驶的时间。再根据路程=速度×时间解答即可。
【详解】
30×3÷(60-30)
=30×3÷30
=90÷30
=3(小时)
60×3=180(千米)
答:快车行了180千米。
【点睛】
本题考查追击问题。追及路程就是慢车3小时所行驶的路程,而追及时间=追及路程÷速度差。快车追上慢车时所用的时间就是追及时间。
34.24本
【详解】
略
35.30套 120把
【详解】
120×4=480(元)
400+480=880(元)
880÷2=440(元)
13200÷440=30(套)
30×4=120(把)
36.96千米/时
【详解】120×14=1680(千米)
1680÷80=21(小时)
21+14=35(小时)
1680×2=3360(千米)
3360÷35=96(千米/时)
37.这道题正确的除数是15,商是7,余数是3
【详解】
(708﹣108)÷40
=600÷40
=15
108÷15=7 (3)
答:这道题正确的除数是15,商是7,余数是3.
38.594平方米
【详解】
495÷15=33(米)
33×33-495=594(平方米)
39.17件,15元
【详解】
436÷49=8(份)……44(元) 44÷29=1(件)……15(元) 2×8+1=17(件)40.1740千米
【解析】
【详解】
66×2=132(千米)132÷(78-67)=12(小时)
(78+67)×12=1740(千米)
答:A,B两城相距路程是1740千米.
41.18
【解析】
【详解】
21×45+27=972
972÷54=18
42.(1)(答案不唯一)
(2)a÷(b×c)=a÷b÷c(表示方法不唯一)
【解析】
【详解】
略
43.8小时
【分析】
甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间。
【详解】
(770-41×2)÷(45+41)
=688÷86
=8(小时)
答:甲车行8小时后与乙车相遇。
【点睛】
此题考查了行程问题,先找出甲、乙两车行驶的路程之和是解题关键。
44.8元
【分析】
用购买团体票花费的钱数除以购票人数,求出每张团体票的价钱。再用每张门票的价钱减去每张团体票的价钱解答。
【详解】
80-3240÷45
=80-72
=8(元)
答:每人便宜了8元。
【点睛】
灵活运用单价=总价÷数量求出每张团体票的价钱是解决本题的关键。
45.够
【分析】
用乒乓球的总个数除以25计算出可以装的袋数,然后用装的袋数除以4计算出可以装的盒数,最后与30比较即可。
【详解】
2800÷25=112(个)
112÷4=28(个)
28<30,够
答:准备30个盒子够用。
【点睛】
熟练掌握除数是两位数的除法计算是解答此题的关键。
46.9件;13元
【分析】
根据总价÷数量=单价,求出两件一组的购买时,平均每件上衣的价钱。再和方案一中每件上衣的价钱比较可知,两件一组的购买比较划算。根据总价÷单价=数量,求出288元共可购买几组,也就是几个两件。再看剩余的钱数够不够单独买一件,若够,用剩余的钱数减去购买一件的钱数,求出最终剩下的钱数。用购买上衣的数量加上1,求出最多购买上衣的数量。
【详解】59÷2=29(元)……1(元)
39>29
则两件一组的购买比较划算。
288÷59=4(组)……52(元)
52-39=13(元)
4×2+1
=8+1
=9(件)
答:最多可以买9件,还剩13元。
【点睛】
本题考查经过问题,熟练掌握公式总价÷单价=数量。解决本题时应注意剩余的52元还可以购买一件上衣,此时剩下的13元才是最终剩下的钱数。
47.3小时
【分析】
先根据速度=路程÷时间,计算出李叔叔骑车的速度,再运用路程÷速度,即可求出他从B 地到C地大约需要多少小时。
【详解】
61÷(40÷2)
=61÷20
≈60÷20
=3(小时)
答:他从B地到C地大约需要3小时。
【点睛】
本题考查了速度、时间、路程三者之间的关系,注意计算时用估算的方法解答。
48.见详解
【分析】
要使需要的时间最短,应先淘米,然后打开炉子,再煮饭。在完成煮饭这项任务的同时,可完成扫地和洗菜这两项任务,最后炒菜。则一共需要1+1+18+7=27分钟。
【详解】
【点睛】
本题考查优化问题,要想时间最短,应合理安排各项任务之间的顺序,注意同时进行的两项任务应互不干扰。
49.购买2份10组的、2份2组的以及1份一组的,或者购买12份2组的和1份1组的; 1760元。
【分析】
根据总价÷数量=单价,分别求出各种购买方式中平均每组垃圾桶的价钱,进而判断出10组的购买或者2组的购买比较划算。第一种购买方法:尽量多的10组的购买,求出可购买几份10组。再看购买几份2组,最后看能否购买1组。第二种购买方法:尽量多的2组的购买,求出可购买几份2组,再看能否购买1组。
【详解】
140÷2=70(元)
700÷10=70(元)
70<80
则10组或者2组的购买比较划算。
第一种购买方法:
25÷10=2(份)……5(组)
5÷2=2(份)……1(组)
700×2+2×140+80
=1400+280+80
=1680+80
=1760(元)
第二种购买方法:
25÷2=12(份)……1(组)
140×12+80
=1680+80
=1760(元)
答:购买2份10组的、2份2组的以及1份一组的,或者购买12份2组的和1份1组的,比较划算。均需要1760元。
【点睛】
解决本题时应先明确尽量多的购买10组的或者2组的比较划算,再进一步解答。
50.全租大客车,租11辆最省钱
【分析】
根据“小客车每辆375元,限乘客25人”,知道乘坐小客车每人需要的钱数为:375÷25=15(元),再由“大客车每辆572元,限乘客44人”,知道乘坐大客车每人需要的钱数为:572÷44=13(元),所以应该尽量多租用大客车,由此再根据师生的人数及大、小客车的限乘客的数量解决问题。
【详解】
因为乘坐小客车每人需要的钱数为:375÷25=15(元),
乘坐大客车每人需要的钱数为:572÷44=13(元),
13<15,
所以应该尽量多租用大客车,
因为480÷44=10(辆)……40(人),
所以可以租11辆大客车,空4个座位,租金为:572×11=6292(元);或者租10辆大客车,2辆小客车,空10个座位;租金为:
572×10+375×2
=5720+750
=70(元)
或者租9辆大客车,再租4辆小客车,空16个座位;租金为:
572×9+375×4
=5148+1500
=68(元)
大客车辆数减少,小客车辆数增加,则租金也增加……;
由上述计算可得:租11辆大客车最省钱,租金是6292元。
答:全租大客车,租11辆最省钱。
【点睛】
根据每种车型的限载人数及租金算出每人次的租车成本,并由此设计方案是解答本题的关键。
51.方案一买票比较合算
【分析】
根据两种情况:在方案一的条件下算出花费,再按照方案二算出花费,比较大小,花钱少的是最合算的。
【详解】
方案一的花费:
4×120+6×50
=480+300
=780(元)
方案二的花费:
(4+6)×100
=10×100
=1000(元)
因为780元<1000元,
所以成人4人购买成人票,儿童6人购买儿童票比较合算,这样花的钱最少。
答:方案一买票比较合算。
【点睛】
根据参与旅游人数及两种不同的方案分别计算比较是解答此类题目的常用方法。
52.方案二更省钱;50元
【分析】
分别计算出两种方案需要的钱数,再比较两种方案需要钱数的大小即可。
【详解】
方案一:
6×7+3×4
=42+12
=54(元)
方案二:
(7+3)×5
=10×5
=50(元)
54>50
答:方案二更省钱;最少用50元买到这些面包。
【点睛】
比较法是最优方案问题的常用方法,计算出不同方案需要的钱数,运用比较法得出最优方案。
53.买10大箱和2小箱最省钱;412元
【分析】
已知同一种饮料有两种包装,大箱:每箱12瓶,共36元;小箱:每箱8瓶,共26元。因为大箱的饮料每瓶36÷12元<小箱的饮料每瓶26÷8元,所以大箱的饮料更为划算,要尽量购买大箱的饮料。现在要买136瓶饮料,而12×10+8×2=136(瓶),即买10大箱和2小箱的饮料数刚好是136瓶。再计算需要的钱数即可。
【详解】
因为大箱的饮料每瓶36÷12元<小箱的饮料每瓶26÷8元,所以尽量购买大箱的饮料。
12×10+8×2
=120+16
=136(瓶)
36×10+26×2
=360+52
=412(元)
答:买10大箱和2小箱最省钱;最少需要412元。
【点睛】
此题应通过分析,得出最佳方案,进而列式计算得出问题结论。
54.7条大船和1条小船;780元
【分析】
两条船的的载客数分别为6人和4人。可以只选择一种船,也可以选择两种船,每条船都坐满。用列表的方法把不同的运送方案一一列举出来,再选择最优方案。
【详解】
【点睛】
根据已知条件和数量关系将所有可能的方案一一列举出来,然后再从各种方案中选择最优方案。
55.100元
【分析】
因为促销活动是买5支送1支,所以每6支中会有1支是赠送的,30支里面有5个6支,就会赠送5支,所以只需付(30-5)支的钱即可.
【详解】
30÷(5+1)=5
1×5=5(支)
(30-5)×4=100(元)
56.3公顷
【解析】
【详解】
200×2=400(米) 50×2=100(米) 400×100=40000(平方米)=4(公顷) 200×50=10000(平方米)=1(公顷) 4-1=3(公顷)
57.猫妈妈14条;小花猫2条
【分析】
根据题意,共钓了16条,猫妈妈给小花猫2条,猫妈妈的条数正好是小花猫的3倍,则总条数16即相当于此时小花猫的4倍,据此求出小花猫的总条数,再用总条数减去妈妈给的2条,就是小花猫钓的条数,再进一步求出猫妈妈的条数。
【详解】
16÷(1+3)
=16÷4
=4(条)
4-2=2(条)
16-2=14(条)
答:猫妈妈钓了14条,小花猫钓了2条。
【点睛】
解答本题的关键是理解题中的倍数关系,先求出小花猫钓的条数。
58.3600元【分析】
用三年级的人数加上四年级的人数,求出三、四年级的总人数。根据总价=单价×数量,求出花费的总钱数。
【详解】
(145+155)×12
=300×12
=3600(元)
答:两个年级一共需要3600元。
【点睛】
本题考查经济问题,关键是熟记公式:总价=单价×数量。
59.15辆大车,1辆小车最省钱。
【解析】
【详解】
略
60.160本
【分析】
先求出全校共有多少个班级,再用图书的总册数除以总的班级数即可求解。
【详解】
3840÷(3×8)
=3840÷24
=160(本)
答:平均每班分160本。
【点睛】
求出全校共有多少个班级是解答本题的关键。
