
1、设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为
A、1; B、1/9; C、1/4; D、1/16
2会用万有引力定律求天体的质量
2、已知地球绕太阳公转的轨道半径r=1.491011m, 公转的周期T=
3.16107s,求太阳的质量M。
3、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。
3会用万有引力定律求卫星的高度
4、已知地球半径约为R=6.4106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。
4会用万有引力定律计算天体的平均密度
5、如果某行星有一颗卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的密度为多少?
6、一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?
5会用万有引力定律推导恒量关系式
7、行星的平均密度是,靠近行星表面的卫星运转周期是T,试证明: T2是一个常量,即对任何行星都相同。
6会求解卫星运动与光学问题的综合题
8、某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。
7会用运动的合成与分解知识求解影子或光斑的速度问题
9、如图18所示,点光源S到平面镜M的距离为d。光屏AB与平面镜的初始位置平行。当平面镜M绕垂直于纸面过中心O的转轴以ω的角速度逆时针匀速转过300时,垂直射向平面镜的光线SO在光屏上的光斑P的即时速度大小为 。
三、警示易错试题
典型错误之一:错误地认为做椭圆运动的卫星在近地点和远地点的轨道曲率半径不同。
1、某卫星沿椭圆轨道绕行星运行,近地点离行星中心的距离是a,远地点离行星中心的距离为b,若卫星在近地点的速率为Va,则卫星在远地点时的速率Vb多少?
典型错误之二:利用错误方法求卫星运动的加速度的大小。
例27、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图20所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:
A、卫星在轨道3上的速率大于在轨道1上的速率。
B、卫星在轨道3上的角速度小于在轨道1上的角速度。
C、卫星在轨道1上经过Q点时的加速度大于它在轨道2
上经过Q点时的加速度。
D、卫星在轨道2上经过P点时的加速度等于它在轨道3
上经过P点时的加速度。
典型错误之三:错误认为卫星克服阻力做功后,卫星轨道半径将变大。
例28、一颗正在绕地球转动的人造卫星,由于受到阻力作用则将会出现:
A、速度变小; B、动能增大;
C、角速度变小; D、半径变大。
错解:当卫星受到阻力作用时,由于卫星克服阻力做功,故动能减小,速度变小,为了继续环绕地球,由于卫星速度可知,V减小则半径R必增大,又因,故ω变小,可见应该选A、C、D。
典型错误之四:混淆稳定运动和变轨运动
例29、如图21所示,a、b、c是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是:
A.b、c的线速度大小相等,且大于a的线速度;
B.b、c的向心加速度大小相等,且大于a的向心加速度;
C.c加速可追上同一轨道上的b,b减速可等候同一轨道上的c;
D.a卫星由于某原因,轨道半径缓慢减小,其线速度将增大。
典型错误之五:混淆连续物和卫星群
例30、根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群。可测出环中各层的线速度V与该层到土星中心的距离R之间的关系。下列判断正确的是:
A、若V与R成正比,则环为连续物;
B、若V2与R成正比,则环为小卫星群;
C、若V与R成反比,则环为连续物;
D、若V2与R成反比,则环为小卫星群。
