最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

沈阳药科大学有机化学笔记

来源:动视网 责编:小OO 时间:2025-10-06 06:01:18
文档

沈阳药科大学有机化学笔记

沈阳药科大学有机化学笔记四重要的羰基酸1,乙醛酸为无色糖浆状液体,易溶于水.2,丙酮酸为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸又称草酰乙酸,为晶体能溶于水在水溶液中产
推荐度:
导读沈阳药科大学有机化学笔记四重要的羰基酸1,乙醛酸为无色糖浆状液体,易溶于水.2,丙酮酸为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸又称草酰乙酸,为晶体能溶于水在水溶液中产
 沈阳药科大学有机化学笔记

四重要的羰基酸 1,乙醛酸为无色糖浆状液体,易溶于水. 2,丙酮酸为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强. 3,β-丁酮酸又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡. 4,α-酮丁二酸又称草酰乙酸,为晶体能溶于水在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色. α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯成酰胺与24-二硝基苯肼作用生成2,4-二硝基苯腙等. 立 体 化 学 基 础 按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构. 偏振光和物质的旋光性 偏振光和物质的旋光性 光是一种电磁波,光在振动的方向与其前进的方向垂直.普通光的光波是在与前进方向垂直的平面内,以任何方向振动.如果使普通光通过一个尼科尔棱镜,那么只有和棱镜的晶轴平行振动的光才能通过.如果这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的光才能通过,这种只在一人方向上振动的光称为平面偏振光,简称偏振光. 实验证明,当偏振光通过葡萄糖或乳酸等物质时,偏振光的振动方向会发生旋转.物质使偏振光的振动方向发生旋转的性质称为旋光性.具有旋光性的物质称为旋光性物质,或光活性物质.旋光性物质使偏振光的振动方向旋转的角度,称为旋光度,用α表示.如果从面对光线入射方向观察,使偏振光的振动方向顺时针旋转的物质称右旋体,用+表示而使偏振光的振动方向逆时针旋转的物质,称左旋体用表示. 旋光度和比旋光度 旋光性物质的旋光度和旋光方向可用旋光仪来测定. 旋光度的大小和方向,不仅取决于旋光性物质的结构和性质,而且与测定时溶液的浓度(或纯液体的密度),盛液管的长度,溶剂的性质,温度和光波的波长等有关.一定温度,一定波长的入射光,通过一个1分米长盛满浓度为1g ml-1旋光性物质的盛液管时所测得的旋光度,称比旋光度,用tλ表示.所以比旋光度可用下式求得 式中C是旋光性物质溶液的浓度,即1毫升溶液里所含物质的克数,L为盛液管的长度,分米.在一定的条件下,旋光性物质的比旋光度是一个物理常数. 测定旋光度。

  可计算出比旋光度,从而可鉴定末知的旋光性物质.例如.某物质的水溶液浓度为5g100ml,在1分米长的盛液管内,温度为20℃光源为钠光,用旋光仪测出旋光度为-4. .按照上面的公式,此物质的比旋光度应为 测定已知旋光性物质的旋光度,也可计算出该物质溶液的浓度.如一葡萄糖溶液在1分米长的盛液管中测出其旋光度为+3.4 ,而它的比旋光度查知为+52.5 ,按以上比旋光度公式即可计算出此葡萄糖溶液的浓度 二,分子的对称性,手性与旋光性 分子的对称因素对称因素可以是一个点,一个轴或一个面. 对称面把分子分成互为实物和镜像关系两半的假想平面,称为对称面. 对称中心分子中任意原子或原子团与P点连线的延长线上等距离处,仍是相同的原子或原子团时,P点就称为对称中心. 凡具有对称面或对称中心任何一种对称因素的分子,称为对称分子,凡不具有任何对称因素的分子,称为不对称分子. 分子的手性和旋光性 象人的两只手,由于五指的构型不。

  左手和右手互为实物和镜像关系,但不能完全重叠,称为手性. 具有手性的分子,称为手性分子或手征性分子. 判断一个化合物是不是手性分子,一般可考查它是否有对称面或对称中心等对称因素. 而判断一个化合物是否有旋光性,则要看该化合物是否是手性分子.如果是手性分子,则该化合物一定有旋光性.如果是非手性分子。

  则没有旋光性.所以化合物分子的手性是产生旋光性的充分和必要的条件. 三,含一个手性碳原子的化合物 对映异构 用不同的方法得到的乳酸,结构式相同,化学性质也相同,但它们的旋光性不同.例如,由肌肉过度运动产生的乳酸,可使偏振光的振动方向顺时针旋转3.8度。

  由左旋乳酸杆菌使葡萄糖或乳糖等发酵而产生的乳酸可使偏振光的振动方向向逆时针方向旋转3.8度.这两种方法产生的乳酸分别称为右旋乳酸和左旋乳酸,分别用(+)-乳酸和(-)-乳酸表示. 分析乳酸分子结构,可知其含有一个连有四个不相同原子或原子团的碳原子,这种碳原子称为手性碳原子,一般用C表示.乳酸分子中的第二个碳原子即为手性碳原子。

  它分别连接-OH,-COOH-CH3和-H4个不相同的原子或原子团,这些基团在空间有两种不同的排列方式,可用立体结构式表示 像乳酸分子这样存在构造相同,但构型不同,彼此互为实物和镜像关系。

  相互对映而不能完全重合的现象,叫做对映异构体.(+)-乳酸和(-)-乳酸是互为镜像关系的异构体,称对映异构体,简称对映体.因其对映体的旋光性不同,因此又称旋光性异构体或光学异构体. 外消旋体 在实验室合成乳酸时,得到的是等量的左旋体和右旋体混合物。

  这种由等量的对映体所组成的混合物称为外消旋体.因这两种组分比旋光度相同,旋光方向相反.所以旋光性正好互相抵消.外消旋体不显旋光性,一般用( )表示. 费歇尔投影式 因对映异构属于构型异构,分子的构型最好用分子模型或立体结构式表示。

  但书写时相当不方便.一般用费歇尔投影式表示.其投影规则如下一般将分子中含有碳原子的基团放在竖线相连的位置上,把命名时编号最小的碳原子放在上端.然后把这样固定下来的分子模型投影到纸平面上.这样将手性碳原子投影到纸面上,把分子模型中指向平面前方的两个原子或原子团投影到横线上,把指向平面后方的两个原子或原子团投影到竖线上,有时手性碳原子可略去不写.例如乳酸的一对对映体可用下式表示 由此可见,含一个手性碳原子的分子的费歇尔投影式是一个十字交叉的平面式.它所代表的分子构型是十字交叉点处是手性碳原子,在纸面上以竖线和手性碳原子相连的上,下两个原子或原子团位于纸平面的后方,以横线和手性碳原子相连的左右两个基团位于纸平面的前方.但是,由于同一个分子模型摆放位置可以是多种多样,所以投影后得到的费歇尔投影式也有多个. 费歇尔投影式必须遵守下述规律,才能保持构型不变 (1)投影式中手性碳原子上任何两个原子或原子团的位置,经过两次或偶数次交换后构型不变. (2)如投影式不离开纸平面旋转180度,则构型不变. (3)投影式中一个基团不动,其余三个按顺时针或逆时针方向旋转,构型不变. 反之,如基团随意变动位置,则构型可能发生变化. 构型的标示方法 两种不同的构型的对映异构体。

  可用分子模型,立体结构式或费歇尔投影式来表示.这些表示法只能一个代表左旋体,一个代表右旋体,不能确定两个构型中哪个是左旋体,哪个是右旋体.因旋光仪只能测定旋光度和旋光方向,不能确定手性碳原子上所连接基团在空间的真实排列情况.下面介绍两种构型的标示方法. (1)D,L命名法 在1951年以前还没有实验方法测定分子的构型。

  因而选择一个简单的对映异构体,人为规定它的构型.费歇尔选择了(+)-甘油醛作为标准,其投影式为三个碳原子在竖线上,-CHO位于上方,-CH2OH位于下方,(+)-甘油醛的羟基在右边,定为D构型其对映体(-)-甘油醛的羟基在左边。

  定为L构型. D-(+)-甘油醛 L-(-)-甘油醛 然后将其它分子的对映异构体与标准甘油醛通过各种直接或间接的方式相联系,来确定其构型,例如下列化合物都是D构型 D-(-)-甘油酸 D-(+)-异丝氨酸 D-(-)-乳酸 D,L构型标示法有一定的局限性。

  它一般只能标示含一个手性碳原子的构型,由于长期习惯,糖类和氨基酸类化合物,目前仍沿用D,L构型的标示方法. (2)R,S标示法 RS构型标示的方法,是1970年由国际纯粹和应用化合会建议采用的.它是基于手性碳原子的实际构型进行标示,因此是绝对构型.其方法是按次序规则,对手性碳原子上连接的四个不同原子或原子团,按优先次序由大到小排列为a→b→c→d,然后将最小的d摆在离观察者最远的位置,最后绕a→b→c划圆,如果为顺时针方向,则该手性碳原子为R构型,如果为逆时针方向。

  则该手性碳原子为S构型. 对于费歇尔投影式,直接按照a→b→c划圆方向标示R,S构型的规律是当最小的基团在横线上时,如果a→b→c划圆方向是顺时针,为S构型是逆时针为R构型,当最小基团在竖线上时,如果a→b→c划圆方向是顺时针,为R构型是逆时针为S构型. R-甘油醛 R-乳酸 S-2-氯丁烷 S-2-氨基苯乙酸 S-2-氨基-3-巯基丙酸 R-2-氯-1-丙醇 (2S,3R)-23-二氯戊烷 值得注意的是,DL构型和RS构型之间并没有必然的对应关系.例如D-甘油醛和D-2-溴甘油醛,如用RS标示法前者为R构型,后者却为S构型. 此外,化合物的构型和旋光方向也没有内在的联系,例如D-(+)-甘油醛和D-(-)-乳酸.因构型和旋光方向是两个不同的概念.构型是表示手性碳原子上四个不同的原子或原子团在空间的排列方式,而旋光方向是指旋光物质使偏振光振动方向旋转的方向. 四,含两个手性碳原子的化合物 1,含两个不相同手性碳原子的化合物 2,34-三羟基丁醛,分子中具有两个不相同的手性碳原子.2号位手性碳原子连接的4个原子或基团分别是-OH,-CHO-CH(OH)CH2OH-H而3号位手性碳原子连接的4个原子或基团分别是-OH,-CH(OH)CHO-CH2OH-H.这是两个不同的手性碳原子.由于每一个手性碳原子有两种构型,因此该化合物应有4种构型.它们的4个光学异构体的费歇尔投影式表示如下 D-(-)-赤藓糖 L-(+)-赤藓糖 D-(-)-苏阿糖 L-(+)-苏阿糖 2R,3R 2S3S 2S3R 2R3S 由上可知,含一个手性碳原子的化合物,有两个光学异构体,含两个不相同手性碳原子的化合物,有4个光学异构体.依此类推,含有n个不相同手性碳原子化合物的光学异构体的数目应为2n个,组成对映体的数目则有2n-1对. 含两个手性碳原子的光学异构的构型,通常是用RS构型标示方法,分别表示出手性碳原子的构型.对于费歇尔投影式,可直接按a→b→c划圆方向,标示手性碳原子的R,S构型.例如 2R,3S 2S3R 2S3S 2R3R 2含两个相同手性碳原子的化合物 2,3-二羟基丁二酸(洒石酸),因第三碳原子和第二碳原子上连接的4个原子或基团,都是-OH-COOH-CH(OH)COOH-H所以洒石酸是含两个相同手性碳原子的化合物.它和含两个不相同手性碳原子的四碳糖不同,只有三种构型.因其中赤型特征的分子,有对称面和对称中心,这两个手性碳原子所连接基团相同,但构型正好相反,因而它们引起的旋光度大小相等,方向相反恰好在分子内部抵消。

  所以不显旋光性. D-(-)-酒石酸 L-(+)-酒石酸 meso-酒石酸 2S,3S 2R3R 2R3S 像这种分子中虽有手性碳原子,但因有对称因素而使旋光性在内部抵消,成为不旋光的物质,称为内消旋体.通常以meso或i表示.内消旋体和对映体的纯左旋体或右旋体互为非对映体,所以内消旋体和左旋体或右旋体,除旋光性不同外,其它物理性质和化学性质都不相同. 由此可见,分子中有无手性碳原子不是判断分子有无旋光性的绝对依据.分子有旋光性的绝对依据是其具有手性.有些化合物,虽然不含有手性碳原子,但由于它有手性,也可以是光学活性物质. 内消旋体和外消旋体是两个不同的概念.虽然两者都不显旋光性,但前者是纯净化合物,后者是等量对映体的混合物,它可以用化学方法或其它方法分离成纯净的左旋体和右旋体. 有机含氮化合物 硝基化合物 。

  分类命名法 硝基(NO2-)取代烃分子中的氢原子所成的化合物称为硝基化合物.硝基是它 的官能团. 按烃基的不同,硝基化合物可分为 脂肪族硝基化合物(RNO2),例如CH3NO2 硝基甲烷,CH3CH2NO2 硝基乙烷. 芳香族硝基化合物(Ar-NO2),例如 硝基苯 β-硝基萘 根据硝基所连的碳原子的不同,硝基化合物可分为 伯硝基化合物,例如 CH3CH2NO2 硝基乙烷. 仲硝基化合物,例如CH3CH(NO2)CH3 2-硝基丙烷 叔硝化化合物,例如 2-甲基-2-硝基丙烷 根据硝基的个数,硝基化合物可分为 一元硝基化合物,例如 CH3CH2NO2 硝基乙烷. 多元硝基化合物,例如NO2CH2CH2NO2 二硝基乙烷 命名硝基化合物时以烃为母体,硝基作为取代基,例如 22-二甲基-4-硝基戊烷 2-硝基-4-氯苯酸 2,46-三硝基甲苯(TNT) 2。

  46-三硝基苯酚(苦味酸) 二乙二酯 二,物理性质 脂肪族硝基化合物多数是油状液体,芳香族硝基化合物除了硝基苯是高沸点液体外,其余多是淡黄色固体,有苦仁气味,味苦.不溶于水,溶于有机溶剂和浓硫酸(形成 盐). 硝基具有强极性,所以硝基化合物是极性分子,有较高的沸点和密度.随着分子中硝基数目的增加,其熔点沸点和密度增大,苦味增加对热稳定性减少,受热易分解爆炸(如TNT是强烈的炸药). 多数硝基化合物有毒,在贮存和使用硝基化合物时应注意. 三,化学性质 还原反应 硝基化合物易被还原。

  芳香族硝基化合物在不同的还原条件下得到不同的还原产 物.例如在酸性介质中以铁粉还原,最后生成芳香族伯胺,在中性条件中以锌粉还原得到氢化偶氮化合物,在碱性条件中以锌粉还原得到联苯胺. + Fe + 稀HCl + Zn + NH4Cl + Zn + NaOH 联苯胺是白色固体,熔点133℃微溶于水溶于乙醇乙醚.用作工业原料,分析化学试剂.在水的分析中作为检验氰化物的试剂,还用于血液的检验,又是高价金属离子的灵敏试剂. 联苯胺有很强的致癌性,在体内易引起膀胱癌,使用联苯胺时,务必注意勿触及皮肤,不误入口中. 2,硝基化合物的酸性 脂肪族硝基化合物中,α-氢受硝基的影响,较为活泼可发生类似酮-烯醇互变异构. 酮式(硝基式) 烯醇式(假酸式) 烯醇式中连在氧原子上的氢相当活。

  反映了分子的酸性,称假酸式其能与强碱成盐,所以含有α-氢硝基化合物可溶于氢氧化钠溶液中,无α-氢硝基化合物则不溶于氢氧化钠溶液.利用这个性质,可鉴定是否含有α-氢的伯,仲硝基化合物和叔硝基化合物. 3,硝基对苯环的影响 硝基是吸电子基团,使苯环电子云密度降低,特别是硝基的邻对位电子云密度降低更为显著,而间位的电子云密度相对较高.所以在芳环的亲电取代反应中,硝基是钝化芳环的间位定位基.如果硝基苯邻对位连有其它基团,它们也要受到硝基的影响.例如,硝基使邻邦对位卤原子亲核取代反应活性增强,硝基使邻对位的羟基,羧基酸性增强。

  使邻对位上甲基活性增强,使邻对位上氨基的碱性减弱. (1)硝基对芳亲电取代反应的影响 硝基是间位定位基,因此亲电取代反应主要发生在间位,反应速度比苯慢.例如 + Br2 + HBr + HNO3(发烟)+ 浓 H2SO4 + H2O + H2SO4(发烟) + H2O (2)硝基对苯环上邻,对位卤素的影响 在卤代苯分子中,由于卤原子与芳环的P-π共轭效应,使卤原子与苯环碳原子结合得更加紧密,因此卤原子很不活泼.在一 条件下,卤代苯不能发生亲核取代反应.例如在一 条件下氯苯很难和氢氧化钠作用,发生碱性水解.但如果在氯苯分子中氯原子的邻,对位引入硝基,由于硝基的吸电子诱导效应和吸电子共轭效应。

  硝基邻位或对位的电子云密度降低,从而使C-Cl键极性增强,因此氯原子活性增强,例如邻或对硝基氯苯就容易水解,而且邻对位硝基愈多,卤原子的活性愈强,愈容易水解.例如 + NaOH + NaHCO3 + NaHCO3 (3)与硝基处于邻或对位的酚羟基或羧基的酸性增强,例如 pKa=10.0 7.21 7.16 8.0 pKa=4.17 2.21 3.40 3.46 硝基的邻,对位碳原子的电子云密度低,受此影响这两个碳原子上的羧基或羟基的氢原子,其质子化倾向增强.间位碳原子的电子云密度也有降低,但比邻对位碳原子高,因此间位上的羧基或羟基的酸性虽有增强,但增强的程度较小. 显然,苯环上硝基愈多,则苯环上羟基或羧基的酸性愈强,例如246-三硝基苯酚的酸性已接近无机酸的水平.苦味酸的pKa=0.38. 四,常见的硝基化合物 硝基苯是淡黄色有苦仁气味的油状液体,通常作为有机溶剂.硝基苯不溶 于水,可以水蒸气蒸馏,其蒸气有毒,应该注意. 2,46-三硝基甲苯(TNT)是黄色结晶,受震而相当稳定,须经起爆剂(雷 汞)引发才锰烈爆炸,是一种优良的炸药. 2,46-三硝基苯酚(苦味酸)是黄色片状结晶,有强的苦味,也是烈性 炸药. 第二节 胺 一,分类和命名法 定义氨分子中的氢原子被氨基取代后所得到的化合物. 分类根据氨分子中的一个,二个和三个氢原子被烃基取代分成伯胺(10胺),仲胺(20胺)和叔胺(30胺).相当于氢氧化铵NH4OH和卤化铵NH4X的四个氢全被烃基取代所成的化合物叫做季铵碱和季铵盐. NH3 → R-NH2 伯胺 → R2NH 仲胺 → R3N 叔胺 NH4OH → R4NOH 季铵碱 NH4X → R4NX 季铵盐 根据氨基所连的烃基不同可分为脂肪胺(R-NH2)和芳香胺(Ar-NH2). 根据氨基的数目又可分成一元胺和多元胺. 应当注意的是 1,伯仲叔胺与伯仲叔醇的分级依据不同.胺的分级着眼于氮原子上烃基的数目,醇的分级立足于羟基所连的碳原子的级别.例如叔丁醇是叔醇而叔丁胺属于伯胺. 叔丁醇 (30醇) 叔丁胺(10胺) 要掌握氨,胺和铵的用法.氨是NH3.氨分子从形式上去掉一个氢原子,剩余 部分叫做氨基-NH2,(去掉二个氢原子叫亚氨基=NH).氨分子中氢原子被烃基取代生成有机化合物的胺.季铵类的名称用铵,表示它与NH4的关系. 命名对于简单的胺,命名时在胺字之前加上烃基的名称即可.仲胺和叔胺中,当烃基相同时,在烃基名称之前加词头二或三.例如 CH3NH2 甲胺 (CH3)2NH 二甲胺 (CH3)3N 三甲胺 C6H5NH2 苯胺 (C6H5)2NH 二苯胺 (C6H5)3N 三苯胺 而仲胺或叔胺分子中烃基不同时,命名时选最复杂的烃基作为母体伯胺,小烃基作为取代 基,并在前面冠以N,突出它是连在氮原子上.例如 CH3CH2CH2N(CH3)CH2CH3 N-甲基-N-乙基丙胺(或甲乙丙胺) C6H5CH(CH3)NHCH3 N-甲基-1-苯基乙胺 C6H5N(CH3)2 N,N-二甲基苯胺 季铵盐和季铵碱,如4个烃基相同时,其命名与卤化铵和氢氧化铵的命名相似,称为卤化四某铵和氢氧化四某铵。

  若烃基不同时,烃基名称由小到大依次排列.例如 (CH3)4N+Cl- 氯化四甲铵 (CH3)4N+OH- 氢氧化四甲铵 OH- 氢氧化三甲基-2-羟乙基铵(胆碱) Br- 溴化二甲基十二烷基苄基铵(新洁尔灭) 二,物理性质 1状态低级脂肪胺,如甲胺二甲胺和三甲胺等,在常温下是气体,丙胺以上是液体,十二胺以上为固体.芳香胺是无色高沸点的液体或低熔点的固体,并有毒性. 2,沸点同分异构体的伯,仲叔胺其沸点依次降低.这是因伯,仲胺分子之间可形成氢键,叔胺则不能.例如丙胺,甲乙胺和三甲胺的沸点分别为48.7℃,36.5℃和2.5℃. 3,水溶性低级的伯,仲叔胺都有较好的水溶性.因为它们都能与水形成氢键.随着分子量的增加,其水溶性迅速减小. 三。

  化学性质 胺的化学性质主要取决于氮原子上的末共用电子对.当它提供末共用电子对给质子或路易斯酸时,胺显碱性它作为亲核试剂时,能与卤代烃发生烃基化反应,能与酰卤酸酐等酰基化试剂发生酰化反应,还能和亚反应,当它和氧化剂作用。

  氮原子提供末共用电子对时表现出还原性.此外芳香胺的氨基,增强了芳环亲电取代反应活性等. 1,碱性 胺分子中氮原子上的末共用电子对,能接受质子,因此胺呈碱性. 脂肪族胺中仲胺碱性最强,伯胺次之叔胺最弱胆它们的碱性都比氨强.其碱性按大小顺序排列如下 (CH3)2NH > CH3NH2 > (CH3)3N > NH3胺的碱性强弱取决于氮原子上末共用电子对和质子结合的难易。

  而氮原子接受质子的能力,又与氮原子上电子云密度大小以及氮原子上所连基团的空间阻碍有关.脂肪族胺的氨基氮原子上所连接的基团是脂肪族烃基.从供电子诱导效应看,氮原子上烃基数目增多,则氮原子上电子云密度增大,碱性增强.因此脂肪族仲胺碱性比伯胺强。

  它们碱性都比氨强,但从烃基的空间效应看,烃基数目增多,空间阻碍也相应增大,三甲胺中三个甲基的空间效应比供电子作用更显著,所以三甲胺的碱性比甲胺还要弱. 芳香胺的碱性比氨弱,而且三苯胺的碱性比二苯胺弱,二苯胺比苯胺弱.这是由于苯环与氮原子核发生吸电子共轭效应,使氮原子电子云密度降低,同时阻碍氮原子接受质子的空间效应增大,而且这两种作用都随着氮原子上所连接的苯环数目增加而增大.因此芳香胺的碱性是 NH3 > 苯胺 > 二苯胺 > 三苯胺 苯胺能与稀盐酸,硫酸等成盐,但不能和乙酸成盐,二苯胺只能与浓的盐酸,硫酸成盐但形成的盐遇水立即水解。

  三苯胺则接近中性,不能和浓盐酸等成盐. 芳脂胺的碱性,由于氨基氮原子上末共用电子对不能和苯环发生P-π共轭,所以碱性一般比苯胺强些.例如苄胺(PKa=9.4)> 苯胺(PKa=4.6) 季胺碱因在水中可完全电离,因此是强碱,其碱性与氢氧化钾相当. 综上所述,胺类是弱碱,其碱性比氢氧化钠弱得多.它可与强酸形成可溶于水的碱盐,遇强碱后可被游离出来.利用这些性质,可将胺类从水不溶性化合物中分离出来.例如分离十二胺和癸胺. 利用胺盐的水溶性,可将某些水不溶性的胺类药物,例如有较好疗效的局部普鲁卡因不溶于水,影响使用.将它配制成水溶性的盐酸盐,做成针剂则大大方便了应用. 氧化反应 胺易被氧化,例如过氧化氢或过氧酸可氧化脂肪族伯,仲叔胺分别生成肟。

   羟胺和N-氧化胺. RCH2NH2 RCH=NOH R2NH R2NOH R3N R3N0- 芳香族胺更容易被氧化.在空气中长期存放芳胺时,芳胺则被空气氧化,生成黄红棕色的复杂氧化物.其中含有醌类,偶氮化合物等.因此在有机合成中,如果要氧化芳胺环上其它基团,则必须首先要保护氨基,否则氨基更易被氧化. 酰基化和磺酰化反应 伯胺或仲胺与酰基化试剂,如酰卤酸酐及酯等作用,发生酰基化反应,生成N-取代酰胺或N,N-二取代酰胺.因叔胺氮原子上没有氢原子,所以不能发生酰化反应. RNH2 + (RCO)2O RCONHR + RCOOH R2NH + (RCO)2O RCONR2 + RCOOH 由于芳香族胺的碱性比脂肪胺弱得多,所以酰化反应缓慢得多,而且芳胺只能被酰卤,酸酐所酰化,不能和酯类反应. 胺的酰化反应有许多重要的应用.由于胺类易被酰卤。

  酸酐酰化成对氧化剂较稳定的取代酰胺,而取代酰胺在酸或碱催化下加热水解,又易除去酰基,把氨基游离出来.所以利用胺的酰化反应可以在有机合成中保护氨基.例如由对甲基苯胺合成普鲁卡因的中间体对氨基苯甲酸,因氨基也易被氧化,因此合成时应首先保护氨基,然后氧化甲基时,被保护的氨基可免受氧化,最后水解又将氨基游离出来. 伯胺和仲胺还可以和苯磺酰氯发生磺酰化反应,生成磺酰胺化合物,但叔胺不发生此反应.伯胺的磺酰胺产物,氮原子上还有一个氮,受磺酰基的吸电子共轭的影响而呈酸性,因此能与碱成盐而溶于氢氧化钠溶液中.仲胺的磺酰胺产物氮原。

文档

沈阳药科大学有机化学笔记

沈阳药科大学有机化学笔记四重要的羰基酸1,乙醛酸为无色糖浆状液体,易溶于水.2,丙酮酸为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸又称草酰乙酸,为晶体能溶于水在水溶液中产
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top