
一、实验目的:
理解经济时间序列存在的不平稳性,掌握ADF检验平稳性的方法。认识不平稳的序列容易导致伪回归问题,掌握为解决伪回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。理解变量之间的因果关系的计量意义,掌握格兰杰因果检验方法。
二、基本概念:
如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间,就称它为平稳的。强调平稳性是因为将一个随机游走变量(即非平稳数据)对另一个随机游走变量进行回归可能导致荒谬的结果,传统的显著性检验将告知我们变量之间的关系是不存在的。这种情况就称为“伪回归”(Spurious Regression)。
有时虽然两个变量都是随机游走的,但它们的某个线形组合却可能是平稳的,在这种情况下,我们称这两个变量是协整的。
因果检验用于确定一个变量的变化是否为另一个变量变化的原因。
三、实验内容及要求:
用Eviews来分析上海证券市场A股成份指数(简记SHA)和深圳证券市场A股成份指数(简记SZA)之间的关系。内容包括:
1.对数据进行平稳性检验
2.协整检验
3.因果检验
4.误差纠正机制ECM
要求:在认真理解本章内容的基础上,通过实验掌握ADF检验平稳性的方法,具体的协整检验过程,掌握格兰杰因果检验方法,以及误差纠正模型方法。
四、实验指导:
1、对数据进行平稳性检验:
首先导入数据,将上海证券市场A股成份指数记为SHA,深圳证券市场A股成份指数记为SZA(若已有wf1文件则直接打开该文件)。
在workfile中按住ctrl选择要检验的二变量,右击,选择open—as group。则此时可在弹出的窗口中对选中的变量进行检验。检验方法有:
1画折线图:“View”―“graph”—“line”,如图3—1所示。
②画直方图:在workfile中按住选择要检验的变量,右击,选择open,或双击选中的变量,“view”―“descriptive statistic”―“histogram and stats”;注意到图中的J.B.统计量,其越趋向于0,则图越符合正态分布,也就说明数据越平稳。如图3—2和3—3所示。
③用ADF检验:方法一:“view”—“unit root test”;方法二:点击菜单中的“quick”―“series statistic”―“unit root test”;分析原则即比较值的大小以及经验法则。点击ok,如图3—4和3—6所示。
图3—1 SHA和SZA原始数值线性图
图3—2 SHA原始数值直方图
图3—3 SZA原始数值直方图
图3—4 单位根检验对话框
| ADF Test Statistic | -1.824806 | 1% Critical Value* | -3.4369 | |
| 5% Critical Value | -2.8636 | |||
| 10% Critical Value | -2.5679 | |||
| *MacKinnon critical values for rejection of hypothesis of a unit root. | ||||
| Augmented Dickey-Fuller Test Equation | ||||
| Dependent Variable: D(SHA) | ||||
| Method: Least Squares | ||||
| Date: 10/25/05 Time: 00:50 | ||||
| Sample(adjusted): 1/08/1993 12/31/1999 | ||||
| Included observations: 1821 after adjusting endpoints | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| SHA(-1) | -0.003575 | 0.001959 | -1.824806 | 0.0682 |
| D(SHA(-1)) | -0.038736 | 0.023427 | -1.6534 | 0.0984 |
| D(SHA(-2)) | -0.010797 | 0.023308 | -0.463217 | 0.33 |
| D(SHA(-3)) | 0.111127 | 0.023287 | 4.772149 | 0.0000 |
| D(SHA(-4)) | 0.062380 | 0.023399 | 2.665901 | 0.0077 |
| C | 3.943077 | 2.121673 | 1.858476 | 0.0633 |
| R-squared | 0.018447 | Mean dependent var | 0.295316 | |
| Adjusted R-squared | 0.015743 | S.D. dependent var | 27.87568 | |
| S.E. of regression | 27.65538 | Akaike info criterion | 9.480807 | |
| Sum squared resid | 1388148. | Schwarz criterion | 9.4952 | |
| Log likelihood | -8626.275 | F-statistic | 6.822257 | |
| Durbin-Watson stat | 2.001095 | Prob(F-statistic) | 0.000003 | |
| ADF Test Statistic | -1.3867 | 1% Critical Value* | -3.4369 | ||
| 5% Critical Value | -2.8636 | ||||
| 10% Critical Value | -2.5679 | ||||
| *MacKinnon critical values for rejection of hypothesis of a unit root. | |||||
| Augmented Dickey-Fuller Test Equation | |||||
| Dependent Variable: D(SZA) | |||||
| Method: Least Squares | |||||
| Date: 02/14/07 Time: 09:28 | |||||
| Sample(adjusted): 1/08/1993 12/31/1999 | |||||
| Included observations: 1821 after adjusting endpoints | |||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
| SZA(-1) | -0.001999 | 0.001441 | -1.3867 | 0.1656 | |
| D(SZA(-1)) | -0.028638 | 0.023396 | -1.224056 | 0.2211 | |
| D(SZA(-2)) | 0.0296 | 0.023325 | 1.271755 | 0.2036 | |
| D(SZA(-3)) | 0.084650 | 0.023327 | 3.628817 | 0.0003 | |
| D(SZA(-4)) | 0.081428 | 0.023390 | 3.481380 | 0.0005 | |
| C | 0.667786 | 0.466362 | 1.431905 | 0.1523 | |
| R-squared | 0.015405 | Mean dependent var | 0.087348 | ||
| Adjusted R-squared | 0.012693 | S.D. dependent var | 7.839108 | ||
| S.E. of regression | 7.7199 | Akaike info criterion | 6.9463 | ||
| Sum squared resid | 110119.0 | Schwarz criterion | 6.9788 | ||
| Log likelihood | -6318.918 | F-statistic | 5.679524 | ||
| Durbin-Watson stat | 1.998663 | Prob(F-statistic) | 0.000033 | ||
粗略观查数据并不平稳。此时应对数据取对数(取对数的好处在于:即可以将间距很大的数据转换为间距较小的数据,也便于后面的取差分),再对新变量进行平稳性检验。点击Eviews中的“quick”―“generate series”键入logsha=log(sha),同样的方法得到logsza。此时,logsha和logsza为新变量,对其进行平稳性检验方法如上,发现也是不平稳的。
图3—7 SHA和SZA对数值线性图
用ADF方法检验logsha和logsza的平稳性。通过比较检验值和不同显著性下的关键值来得出结论。如下图(前者是对SHA检验结果,后者是对SZA检验结果)中所示,检验值小于关键值,则得出数据不平稳,反之平稳。
| ADF Test Statistic | -1.795526 | 1% Critical Value* | -3.4369 | |||||
| 5% Critical Value | -2.8636 | |||||||
| 10% Critical Value | -2.5679 | |||||||
| *MacKinnon critical values for rejection of hypothesis of a unit root. | ||||||||
| Augmented Dickey-Fuller Test Equation | ||||||||
| Dependent Variable: D(LOGSHA) | ||||||||
| Method: Least Squares | ||||||||
| Date: 02/14/07 Time: 09:42 | ||||||||
| Sample(adjusted): 1/08/1993 12/31/1999 | ||||||||
| Included observations: 1821 after adjusting endpoints | ||||||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | ||||
| LOGSHA(-1) | -0.003583 | 0.001995 | -1.795526 | 0.0727 | ||||
| D(LOGSHA(-1)) | -0.034725 | 0.023459 | -1.480261 | 0.1390 | ||||
| D(LOGSHA(-2)) | 0.020525 | 0.023427 | 0.876128 | 0.3811 | ||||
| D(LOGSHA(-3)) | 0.065236 | 0.023404 | 2.787354 | 0.0054 | ||||
| D(LOGSHA(-4)) | 0.034323 | 0.023421 | 1.465476 | 0.1430 | ||||
| C | 0.0242 | 0.013751 | 1.810156 | 0.0704 | ||||
| R-squared | 0.008123 | Mean dependent var | 0.000254 | |||||
| Adjusted R-squared | 0.005391 | S.D. dependent var | 0.029001 | |||||
| S.E. of regression | 0.0223 | Akaike info criterion | -4.245075 | |||||
| Sum squared resid | 1.518313 | Schwarz criterion | -4.226929 | |||||
| Log likelihood | 3871.140 | F-statistic | 2.972845 | |||||
| Durbin-Watson stat | 2.001003 | Prob(F-statistic) | 0.011179 | |||||
| ADF Test Statistic | -1.236119 | 1% Critical Value* | -3.4369 | |||||
| 5% Critical Value | -2.8636 | |||||||
| 10% Critical Value | -2.5679 | |||||||
| *MacKinnon critical values for rejection of hypothesis of a unit root. | ||||||||
| Augmented Dickey-Fuller Test Equation | ||||||||
| Dependent Variable: D(LOGSZA) | ||||||||
| Method: Least Squares | ||||||||
| Date: 02/14/07 Time: 09:43 | ||||||||
| Sample(adjusted): 1/08/1993 12/31/1999 | ||||||||
| Included observations: 1821 after adjusting endpoints | ||||||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | ||||
| LOGSZA(-1) | -0.0015 | 0.001331 | -1.236119 | 0.2166 | ||||
| D(LOGSZA(-1)) | -0.010639 | 0.023402 | -0.454600 | 0.95 | ||||
| D(LOGSZA(-2)) | 0.043671 | 0.023391 | 1.866982 | 0.0621 | ||||
| D(LOGSZA(-3)) | 0.033284 | 0.023393 | 1.422825 | 0.1550 | ||||
| D(LOGSZA(-4)) | 0.078284 | 0.023392 | 3.346659 | 0.0008 | ||||
| C | 0.009404 | 0.007463 | 1.260037 | 0.2078 | ||||
| R-squared | 0.009984 | Mean dependent var | 0.000252 | |||||
| Adjusted R-squared | 0.007257 | S.D. dependent var | 0.027998 | |||||
| S.E. of regression | 0.0277 | Akaike info criterion | -4.317335 | |||||
| Sum squared resid | 1.412468 | Schwarz criterion | -4.299190 | |||||
| Log likelihood | 3936.934 | F-statistic | 3.660782 | |||||
| Durbin-Watson stat | 2.001713 | Prob(F-statistic) | 0.002675 | |||||
2、协整检验:
首先要提取残差:点击菜单中的“quick”―“estimate equation”键入“logsha c logsza”,得到结果如下:
| Dependent Variable: LOGSHA | ||||
| Method: Least Squares | ||||
| Date: 02/14/07 Time: 09:52 | ||||
| Sample: 1/01/1993 12/31/1999 | ||||
| Included observations: 1826 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 3.185265 | 0.026985 | 118.0392 | 0.0000 |
| LOGSZA | 0.661851 | 0.004811 | 137.5733 | 0.0000 |
| R-squared | 0.912098 | Mean dependent var | 6.883358 | |
| Adjusted R-squared | 0.912050 | S.D. dependent var | 0.340928 | |
| S.E. of regression | 0.101107 | Akaike info criterion | -1.744184 | |
| Sum squared resid | 18.600 | Schwarz criterion | -1.738149 | |
| Log likelihood | 1594.440 | F-statistic | 126.43 | |
| Durbin-Watson stat | 0.041307 | Prob(F-statistic) | 0.000000 | |
接着在窗口中点击“procs”―“make residual series”来对残差resid01进行提取和保存;然后对残差进行ADF检验(方法同上),得到结果如下图。你会发现数据通过了检验,残差resid01是平稳的。所以logsha同logsza有协整关系。
| ADF Test Statistic | -4.132316 | 1% Critical Value* | -3.4369 | |||||
| 5% Critical Value | -2.8636 | |||||||
| 10% Critical Value | -2.5679 | |||||||
| *MacKinnon critical values for rejection of hypothesis of a unit root. | ||||||||
| Augmented Dickey-Fuller Test Equation | ||||||||
| Dependent Variable: D(RESID01) | ||||||||
| Method: Least Squares | ||||||||
| Date: 02/14/07 Time: 10:01 | ||||||||
| Sample(adjusted): 1/08/1993 12/31/1999 | ||||||||
| Included observations: 1821 after adjusting endpoints | ||||||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | ||||
| RESID01(-1) | -0.019808 | 0.004793 | -4.132316 | 0.0000 | ||||
| D(RESID01(-1)) | -0.0306 | 0.023497 | -3.800810 | 0.0001 | ||||
| D(RESID01(-2)) | -0.020115 | 0.023563 | -0.853691 | 0.3934 | ||||
| D(RESID01(-3)) | 0.0304 | 0.023497 | 2.736735 | 0.0063 | ||||
| D(RESID01(-4)) | 0.0220 | 0.023396 | 0.944140 | 0.3452 | ||||
| C | 9.14E-05 | 0.000476 | 0.192199 | 0.8476 | ||||
| R-squared | 0.023020 | Mean dependent var | 8.71E-05 | |||||
| Adjusted R-squared | 0.020329 | S.D. dependent var | 0.020512 | |||||
| S.E. of regression | 0.020303 | Akaike info criterion | -4.952841 | |||||
| Sum squared resid | 0.748139 | Schwarz criterion | -4.934695 | |||||
| Log likelihood | 4515.561 | F-statistic | 8.553192 | |||||
| Durbin-Watson stat | 1.996742 | Prob(F-statistic) | 0.000000 | |||||
接下来以同样的方法协整logsza c logsha,得到残差resid02,经过检验也是平稳的。
| ADF Test Statistic | -3.900100 | 1% Critical Value* | -3.4369 | |||||||
| 5% Critical Value | -2.8636 | |||||||||
| 10% Critical Value | -2.5679 | |||||||||
| *MacKinnon critical values for rejection of hypothesis of a unit root. | ||||||||||
| Augmented Dickey-Fuller Test Equation | ||||||||||
| Dependent Variable: D(RESID02) | ||||||||||
| Method: Least Squares | ||||||||||
| Date: 02/14/07 Time: 10:03 | ||||||||||
| Sample(adjusted): 1/08/1993 12/31/1999 | ||||||||||
| Included observations: 1821 after adjusting endpoints | ||||||||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | ||||||
| RESID02(-1) | -0.017724 | 0.004544 | -3.900100 | 0.0001 | ||||||
| D(RESID02(-1)) | -0.095416 | 0.023495 | -4.061081 | 0.0001 | ||||||
| D(RESID02(-2)) | -0.024582 | 0.023577 | -1.042621 | 0.2973 | ||||||
| D(RESID02(-3)) | 0.059774 | 0.023511 | 2.542356 | 0.0111 | ||||||
| D(RESID02(-4)) | 0.022353 | 0.023395 | 0.955429 | 0.3395 | ||||||
| C | -0.000105 | 0.000652 | -0.160597 | 0.8724 | ||||||
| R-squared | 0.022832 | Mean dependent var | -9.79E-05 | |||||||
| Adjusted R-squared | 0.020140 | S.D. dependent var | 0.028126 | |||||||
| S.E. of regression | 0.027841 | Akaike info criterion | -4.321324 | |||||||
| Sum squared resid | 1.406845 | Schwarz criterion | -4.303179 | |||||||
| Log likelihood | 3940.566 | F-statistic | 8.481765 | |||||||
| Durbin-Watson stat | 1.996185 | Prob(F-statistic) | 0.000000 | |||||||
3、因果检验:
在workfile中同时选中“logsha”和“logsza”,右击,选择“open”―“as group”,在弹出的窗口中点击“view”―“granger causality”并选择滞后阶数(此处我们根据以往的实证检验结果选择滞后值为5),点ok,结果如下:
| Pairwise Granger Causality Tests | |||
| Date: 02/14/07 Time: 10:10 | |||
| Sample: 1/01/1993 12/31/1999 | |||
| Lags: 1 | |||
| Null Hypothesis: | Obs | F-Statistic | Probability |
| LOGSZA does not Granger Cause LOGSHA | 1825 | 12.8328 | 0.00035 |
| LOGSHA does not Granger Cause LOGSZA | 1.44701 | 0.22917 | |
| Pairwise Granger Causality Tests | |||
| Date: 02/14/07 Time: 10:11 | |||
| Sample: 1/01/1993 12/31/1999 | |||
| Lags: 2 | |||
| Null Hypothesis: | Obs | F-Statistic | Probability |
| LOGSZA does not Granger Cause LOGSHA | 1824 | 8.31456 | 0.00025 |
| LOGSHA does not Granger Cause LOGSZA | 0.91301 | 0.40150 | |
| Pairwise Granger Causality Tests | |||
| Date: 02/14/07 Time: 10:11 | |||
| Sample: 1/01/1993 12/31/1999 | |||
| Lags: 3 | |||
| Null Hypothesis: | Obs | F-Statistic | Probability |
| LOGSZA does not Granger Cause LOGSHA | 1823 | 5.832 | 0.00057 |
| LOGSHA does not Granger Cause LOGSZA | 0.99468 | 0.39435 | |
| Pairwise Granger Causality Tests | |||
| Date: 02/14/07 Time: 10:12 | |||
| Sample: 1/01/1993 12/31/1999 | |||
| Lags: 4 | |||
| Null Hypothesis: | Obs | F-Statistic | Probability |
| LOGSZA does not Granger Cause LOGSHA | 1822 | 4.39265 | 0.00155 |
| LOGSHA does not Granger Cause LOGSZA | 0.80455 | 0.52217 | |
| Pairwise Granger Causality Tests | |||
| Date: 02/14/07 Time: 10:09 | |||
| Sample: 1/01/1993 12/31/1999 | |||
| Lags: 5 | |||
| Null Hypothesis: | Obs | F-Statistic | Probability |
| LOGSZA does not Granger Cause LOGSHA | 1821 | 3.60184 | 0.00303 |
| LOGSHA does not Granger Cause LOGSZA | 0.70399 | 0.62045 | |
先看F检验值,如前所述,若F值大,则拒绝假设。在本例中即logsza是logsha变化的原因;而logsha不影响logsza。同样的结论也可以从Probability中得到。
4、误差纠正机制ECM(error correction mechanism)
即使两个变量之间有长期均衡关系,但在短期内也会出现失衡(例如收突发事件的影响)。此时,我们可以用ECM来对这种短期失衡加以纠正。
具体作法是:首先要提取残差,从“sha c sza” 中提取残差“resid03”,接着点击“quick”―“estimate equation”,在弹出得窗口中输入:“d(sha) c d(sza) resid03(-1)”。Resid03(-1)中的(-1)指的是滞后一阶,结果如下:
| Dependent Variable: D(SHA) | ||||
| Method: Least Squares | ||||
| Date: 02/14/07 Time: 10:22 | ||||
| Sample(adjusted): 1/04/1993 12/31/1999 | ||||
| Included observations: 1825 after adjusting endpoints | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 0.109030 | 0.4641 | 0.232503 | 0.8162 |
| D(SZA) | 2.462137 | 0.059863 | 41.12931 | 0.0000 |
| RESID03(-1) | -0.021581 | 0.004824 | -4.473995 | 0.0000 |
| R-squared | 0.484705 | Mean dependent var | 0.348548 | |
| Adjusted R-squared | 0.484139 | S.D. dependent var | 27.010 | |
| S.E. of regression | 20.031 | Akaike info criterion | 8.834145 | |
| Sum squared resid | 731107.4 | Schwarz criterion | 8.843202 | |
| Log likelihood | -8058.157 | F-statistic | 856.9180 | |
| Durbin-Watson stat | 2.172798 | Prob(F-statistic) | 0.000000 | |
resid03(-1)的系数为-0.021581,且通过了t检验(4.8231>2),其表明sha的实际值与长期或均衡值之间的差异约有2.1581%得以纠正。从这也可以看出resid03(-1)的系数必须为负值。
从表面上看,深A对上A的影响要更强一点,上A对深A的依赖也更多一点,但总体看来两个市场的联系还是很紧密的。深A走在前面的原因可能是因为深圳的地理位置,与海外市场联系更密切一些。所以海外市场大市变化的信息最先传递和影响到深圳市场,经过一段时间,蔓延到内陆地区。从整体上看,就形成上A跟在深A后面变动的局面。而两个市场的投资者包括投资理念等各方面都是类似的,总体对价格信息的表现也大同小异,两个市场相关度很高可以理解。
值得指出的是,目前一般认为,深市股指是随上市股值而动,与我们上面的检验结论相反。但应该注意到的是,我们上边研究中的样本范围为1993年到1999年,而现在的情况已经发生了很大变化。所以,若要研究当前股指的联动效应,需选择最新的样本范围。有兴趣的同学不妨一试,看是否会得出新的结论。
