
1.(江苏省南京市)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG.
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P运动路线的长.
E
2.(江苏省苏州市)如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.
(1)在△ABC中,AB=_________;
(2)当x=_________时,矩形PMCN的周长是14;
B
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.
3.(江苏省苏州市)如图,四边形OABC是面积为4的正方形,函数y=(x>0)的图象经过点B.
(1)求k的值;
F
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y=(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
4.(江苏省苏州市)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
F
(2)求证:EH=AB;
(3)若=,求的值.
5.(江苏省苏州市)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐____________.
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
B
F
6.(江苏省苏州市)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
A
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA 2+PB 2+PM 2>28是否总成立?请说明理由.
7.(江苏省无锡市)如图,已知点A(,0),B(0,6),经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)用含t的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥x轴于D.问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.
C
8.(江苏省无锡市)如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.
(1)请在图2中,计算裁剪的角度∠BAD;
(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.
图1
C
A
9.(江苏省扬州市)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在斜边AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若点F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
C
(备用图)
10.(江苏省南通市)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
F
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=,要使△DEF为等腰三角形,m的值应为多少?
y
11.(江苏省南通市)已知抛物线y=ax 2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax 2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.
12.(江苏省南通市中考网上阅卷模拟考试)已知二次函数y=-x 2+bx+c的图象与x轴交于B(-2,0),C(4,0)两点,点E是对称轴l与x轴的交点.
(1)求二次函数的解析表达式;
(2)T为对称轴l上一动点,以点B为圆心,BT为半径作⊙B,当直线CT与⊙B相切时,求T点的坐标;
(3)若在x轴上方的P点为抛物线上的动点,且∠BPC为锐角,求PE的取值范围;
l
(4)对于(1)中得到的关系式,若x为整数,在使得y为完全平方数的所有x的值中,设x的最大值为m,最小值为n,次小值为s,(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)求m、n、s的值.
13.(江苏省徐州市)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:
(1)梯形上底的长AD=__________cm,梯形ABCD的面积=__________cm2;
(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);
(3)当t为何值时,△EBF与梯形ABCD的面积之比为1 : 2.
图②
14.(江苏省徐州市)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
MC
MC
(1)如图②,若M为AD边的中点.
①△AEM的周长=__________cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
15.(江苏省徐州市)如图,已知二次函数y=-x 2+x+4的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.
(1)点A的坐标为____________,点C的坐标为____________;
(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
D
(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有两个,并求出此时点P的坐标.
16.(江苏省徐州市中考网上阅卷作答训练)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
y
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值;若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
17.(江苏省连云港市)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有_____________;
(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△AED.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图2,四边形ABCD中,AB与CD不平行,且S△ACD>S△ABC ,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由;
P
(4)如图3,四边形ABCD是任意凸四边形,P是AB边上的任意一点(不与A、B重合),请画出过点P的面积等分线.
B
E
18.(江苏省连云港市)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点.
(1)连接CO,求证:CO⊥AB;
(2)若△POA是等腰三角形,求点P的坐标;
(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.
x
19.(江苏省连云港市中考网上阅卷模拟考试)如图,在平面直角坐标系中,已知点A(m,0)(0<m <)、B(,0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆的交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)若=,试求经过B、F、O三点的抛物线l的解析式;
(3)在(2)的条件下,将抛物线l在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,若直线BE向上平移t个单位与新图象有两个公共点,试求t的取值范围.
B
20.(江苏省张家港市初三网上阅卷适应性考试)如图1,抛物线y=ax 2-2ax-b(a <0)与x轴交于点A、点B(-1,0),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的解析式;
②如图2,点E是y轴负半轴上的一点,连结BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF : BF=1 : 2,求点M、N的坐标;
图1
Q
E
③如图3,点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.
21.(江苏省常州市)如图,已知二次函数y=ax 2+bx+3的图像与x轴相交于点A、C,与y轴相较于点B,A(-,0),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax 2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
1
22.(江苏省常州市)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC边相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.
(备用图)
P
23.(江苏省泰州市)如图,二次函数y=-x 2+c的图象经过点D(-,),与x轴交于A、B两点.
(1)求c的值;
(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
(3)设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
图②
图①
24.(江苏省泰州市)在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O半径为个单位长度.
(1)如图甲,若点A在x轴正半轴上,点B在y轴正半轴上,且OA=OB.
①求k的值
②若b=4,点P为直线y=kx+b上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标;
x
(2)若k=-,直线y=kx+b将圆周分成两段弧长之比为1 : 2,求b的值.(图乙供选用)
x
25.(江苏省盐城市)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.
(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30º.
F
图1
求 的值.
26.(江苏省盐城市)已知:函数y=ax 2+x+1的图象与x轴只有一个公共点.
(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax 2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax 2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.
A
27.(江苏省镇江市)如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长;
A
(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为____________________.
28.(江苏省镇江市)如图,在直角坐标系xOy中,Rt△OAB和Rt△OCD的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,Rt△OAB的面积恒为.
M
试解决下列问题:
(1)填空:点D坐标为____________;
(2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;
(3)等式BO=BD能否成立?为什么?
(4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.
29.(江苏省镇江市)对非负实数x“四舍五入”到个位的值记为< x >,
即:当n为非负整数时,如果n-≤x<n+,则< x >=n.
如:< 0 >=< 0.48 >=0,< 0. >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…
试解决下列问题:
(1)填空:①< π>=________(π为圆周率);
②如果< 2x-1>=3,则实数x的取值范围为________________;
(2)①当x≥0,m为非负整数时,求证:< x+m >=m+< x >
②举例说明< x+y >=< x >+< y >不恒成立;
(3)求满足< x >=x的所有非负实数x的值;
(4)设n为常数,且为正整数,函数y=x 2-x+的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足< >=n的所有整数k的个数记为b.求证:a=b=2n.
30.(江苏省淮安市)如图(a),在平面直角坐标系中,点A的坐标为(12,0),点B的坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C的坐标是(_____,_____),当点D运动8.5秒时所在位置的坐标是(_____,_____);
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;
(3)点E在线段AB上以同样速度由点A向点B运动,如图(b),若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A、O为对应顶点的情况).
图(a)
E
31.(江苏省宿迁市)已知抛物线y=x 2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
D
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求出点Q的坐标;若不存在,请说明理由.
2014年中考数学压轴30题精编--江苏篇
1.解:(1)当点E与点A重合时,x=0,y=×2×2=2
E
当点E与点A不重合时,0<x ≤2
在正方形ABCD中,∠A=∠ADC=90°
∴∠MDF=90°,∠A=∠MDF
∴△AME≌△DMF,ME=MF
在Rt△AME中,AE=x,AM=1,ME=
∴EF=2ME=2
过M作MN⊥BC,垂足为N(如图)
则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM
∴∠AME+∠EMN=90°
∵∠EMG=90°,∴∠GMN+∠EMN=90°
∴∠AME=∠GMN,∴Rt△AME∽Rt△NMG
∴==,∴MG=2ME=2
∴y=EFQ·MG=·2·2=2x 2+2
∴y=2x 2+2(0≤x ≤2) 6分
(2)点P运动路线的长为2 8分
2.解:
(1)10 2分
(2)5 4分
(3)∵PM⊥AC,PN⊥BC,∴∠AMP=∠PNB=90°
∵AC∥PN,∴∠A=∠NPB,∴△AMP∽△PNB
∴当P为AB中点,即AP=PB时,△AMP≌△PNB
此时S△AMP =S△PNB =AM·MP=×4×3=6
而矩形PMCN的面积=MP·MC=3×4=12
∴不存在能使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等的x的值
8分
3.解:
(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2
∴点B的坐标为(2,2)
∴k=xy=2×2=4 2分
(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得
∴ON=OM=2OA=4,∴点E的横坐标为4,点F的纵坐标为4
∵点E、F在函数y=的图象上
∴当x=4时,y=1,即E(4,1)
当y=4时,x=1,即F(1,4)
设直线EF的解析式为y=mx+n,将E、F两点坐标代入
得 ∴m=-1,n=5
∴直线EF的解析式为y=-x+5 8分
4.解:
(1)证明:在等腰梯形ABCD中,AB=DC,∴∠B=∠C
∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC
F
∴OE∥AB 3分
(2)证明:连结OF
∵⊙O与AB切于点F,∴OF⊥AB
∵EH⊥AB,∴OF∥EH
又∵OE∥AB,∴四边形OEHF是平行四边形
∴EH=OF
∵OF=CD=AB
∴EH=AB 6分
(3)解:连结DE
∵CD是直径,∴∠DEC=90°,∴∠DEC=∠EHB
∴△EHB∽△DEC,∴=
设BH=k,∵=,则BE=4k,EH==k
∴CD=2EH=2k
∴=== 9分
5.解:
(1)变小 2分
(2)问题①:
30°
解:∵B=90°,∠A=30°,BC=6,∴AC=12
∵FDE=90°,∠DEF=45°,DE=4,∴DF=4
连结FC,设FC∥AB,则∠FCD=∠A=30°
∴在Rt△FDC中,DC=
∴AD=AC-DC=12-
即AD=(12-)cm时,FC∥AB 4分
问题②:
解:设AD=x,在Rt△FDC中,FC 2=DC 2+FD 2=(12-x)2+16
(Ⅰ)当FC为斜边时
由AD 2+BC 2=FC 2得:x 2+6 2=(12-x)2+16,∴x=
(Ⅱ)当AD为斜边时
由FC 2+BC 2=AD 2得:(12-x)2+16+6 2=x 2,∴x=>8(不合题意,舍去)
(Ⅲ)当BC为斜边时
由AD 2+FC 2=BC 2得:x 2+(12-x)2+16=6 2
即x 2-12x+62=0,Δ=144-248<0,∴方程无解
另解:BC不能为斜边
∵FC>CD,∴FC+AD>12
∴FC、AD中至少有一条线段的长度大于6
∴BC不能为斜边
∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得,当x=cm时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形 7分
15°
问题③:
解法一:不存在这样的位置,使得∠FCD=15°
理由如下:
假设∠FCD=15°
由∠FED=45°得∠EFC=30°
作∠EFC的平分线,交AC于点P
则∠EFP=∠CFP=∠FCP=15°
∴PF=PC,∠DFP=∠DFE+∠EFP=60°
∴PD=,PC=PF=2FD=8
∴PC+PD=8+>12
∴不存在这样的位置,使得∠FCD=15° 9分
解法二:不存在这样的位置,使得∠FCD=15°
H
理由如下:
假设∠FCD=15°,设AD=x
由∠FED=45°得∠EFC=30°
作EH⊥FC,垂足为H,则HE=EF=
CE=AC-AD-DE=8-x,且FC 2=(12-x)2+16
∵∠FDC=∠EHC=90°,∠DCF为公共角
∴△CHE∽△CDF,∴=
又()2=()2=,∴()2=
即=,整理得x 2-8x-32=0
∴x1=4-<0,x2=4+>8,均不合题意,舍去
∴不存在这样的位置,使得∠FCD=15° 9分
6.解:(1)设y=a(x-3)2,把B(0,4)代入,得a=
∴抛物线的解析式为y=(x-3)2 2分
5
(2)解法一:∵四边形OAMB四条边的长度是四个连续的正整数
∴可能有三种情况:1、2、3、4;2、3、4、5;3、4、5、6
∵M点位于对称轴的右侧,且m、n为正整数
∴m是大于或等于4的正整数,m>4
∵OA=3,OB=4
∴MB只有两种可能:MB=5或MB=6
当m=4时,n=(4-3)2=(不是整数,舍去)
当m=5时,n=(5-3)2=(不是整数,舍去)
当m=6时,n=(6-3)2=4,MB=6
当m≥7时,MB>6
因此只有一种可能,即当点M的坐标为(6,4)时,MB=6,MA=5
四边形OAMB四条边的长度分别为3、4、5、6 5分
解法二:∵m、n为正整数,n=(m-3)2,∴m是3的倍数
又∵m>3,∴m=6,9,12,…
5
当m=6时,n=(6-3)2=4,此时MA=5,MB=6
∴四边形OAMB四条边的长度分别为3、4、5、6
当m≥9时,MB>6
∴四边形OAMB四条边的长度不能是四个连续的正整数
∴点M的坐标只有一种可能(6,4) 5分
(3)解法一:设P(3,t),MB与对称轴的交点为D
则PA=| t|,PD=| 4-t|,PM 2=PB 2=(4-t)2+9
∴PA 2+PB 2+PM 2=t 2+2[(4-t)2+9]
=3t 2-16t+50=3(t-)2+
∴当t=时,PA 2+PB 2+PM 2有最小值
∴PA 2+PB 2+PM 2>28总是成立 9分
7.解:(1)作PH⊥OB于H(如图1),∵OB=6,OA=,∴∠OAB=30°
图1
∴HP=t,BH=t+ t= t
∴P(t,6- t) 4分
(2)当⊙P与直线OC第一次相切时(如图2)
(6-t)-t=1,∴t= (s)
圆心P到直线CD的距离为:6××-×= >1
∴此时⊙P与直线CD相离
当⊙P与直线OC第二次相切时(如图3)
(6-t)+1=t,∴t= (s)
圆心P到直线CD的距离为6××-×= <1
∴此时⊙P与直线CD相交
10分
l
l
8.解:(1)由图2的包贴方法知:AB的长等于三棱柱的底边周长
∴AB=30
∵纸带宽为15,∴sin∠BAD=sin∠ABM===
∴∠BAD=30° 4分
(2)在图3中,将三棱柱沿过点A的侧棱剪开,得到如图甲的侧面展开图
C
C
将图甲中的△ABE向左平移30cm,△CDF向右平移30cm,拼成如图乙中的平行四边形ABCD,此平行四边形即为图2中的平行四边形ABCD
由题意知:BC=BE+CE=2CE=2×=
∴所需矩形纸带的长度为MB+BC=30·cos30°+=cm
10分
9.解:(1)在Rt△ABC中,由勾股定理得AB===5
∵∠ADC=∠ACB=90°,∠A=∠A,∴△ACD∽△ABC
∴=,即=
∴AD= 1分
(2)①由(1)得DB=5-=
当0<x ≤时(如图1)
由△AEF∽△ACB得=,即=,∴EF=x
∴y=AE·EF=x·x=x 2
即y=x 2(0<x ≤) 3分
F
当<x ≤5时(如图2)
EB=5-x,由△FEB∽△ACB得EF=(5-x)
∴y=AE·EF=x·(5-x)=-x 2+x
即y=-x 2+x(<x ≤5) 5分
②当0<x ≤时,y=x 2的函数值随x的增大而增大
F
∴当x=时,y有最大值,y最大=×()2=
当<x ≤5时,y=-x 2+x=-( x-)2+
∴当x=时,y有最大值,y最大=
∵<
∴当x=时,y有最大值,y最大= 7分
(3)假设存在直线EF将△ABC的周长和面积同时平分
则AE+AF=( AC+BC+AB)=( 3+4+5)=6
又AE=x,∴当0<x≤5时,AF=6-x
∴0<6-x<3,∴3<x<6
∴3<x≤5 8分
如图3,过点F作FG⊥AB于G,则FG=AF=( 6-x)
G
∴S△AEF =AE·FG=x( 6-x) 9分
∵S△ABC =AC·BC=6,∴x( 6-x)=3
整理得:2x 2-12x+15=0
解得:x1=3-,x2=3+ 10分
∵x1=3-<3,∴x1不合题意,应舍去
∵3<3+<5,∴x2符合题意
故存在直线EF将△ABC的周长和面积同时平分,此时x=3+ 12分
11.解:(1)设直线AB的解析式为y=px+q
则 解得
E
∴直线AB的解析式为y=-x+1 2分
∵当x=3和x=-3时,这条抛物线上对应点的纵坐标相等
∴抛物线的对称轴为y轴,∴b=0,∴y=ax 2+c
把A(-4,3)、B(2,0)代入,得:
解得
∴抛物线的解析式为y=x 2-1 4分
(2)∵A(-4,3),∴AO==5,即⊙A的半径为5
∵经过点C(0,-2)的直线l与x轴平行
∴直线l的解析式为y=-2,∴点A到直线l的距离为5
∴直线l与⊙A相切 8分
(3)把x=-1代入y=-x+1,得y=,∴D(-1,)
过点P作PH⊥直线l于H,则PH=n+2,即m 2+1
又∵PO===m 2+1
∴PH=PO 10分
∵DO的长度为定值,∴当PD+PO即PD+PH最小时,△PDO的周长最小
∵PD+PH≥DH,∴PD+PH的最小值为DH,即当D、P、H三点在同一直线上时,
PD+PH最小
此时点P的横坐标为-1,代入抛物线的解析式,得n=-
H
∴P(-1,-) 12分
此时四边形CODP的面积为:
S四边形CODP =S△PDO+ S△PCO
=×( +)×1+×2×1=。。。14分
10.解:(1)∵EF⊥DE,∴∠DEF=90°,∴∠BEF+∠CED=90°
∵∠BEF+∠BFE=90°,∴∠BFE=∠CED
又∵∠B=∠C=90°,∴Rt△BFE∽Rt△CED
F
∴=,即=
∴y=-x 2+x 。。。。。。。。。。4分
(2)若m=8,则y=-x 2+x=-( x-4)2+2
∴当x=4时,y的值最大,y最大=2 7分
(3)若y=,则-x 2+x=
∴x 2-8x+12=0,解得x1=2,x2=6 8分
∵△DEF中∠FED是直角,∴要使△DEF为等腰三角形,只能DE=EF
此时Rt△BFE≌Rt△CED
∴当EC=2时,m=CD=BE=6 10分
当EC=6时,m=CD=BE=2
即m的值应为6或2时,△DEF是等腰三角形 12分
12.解:(1)把B(-2,0),C(4,0)代入y=-x 2+bx+c
得 解得 2分
∴二次函数的解析表达式为y=-x 2+2x+8 4分
(2)∵直线CT与⊙B相切,∴∠BTC=90°
易知△BTE≌△CTE,∴∠BTE=∠CTE=45°
∴TE=BE=CE=3 6分
∴T点的坐标为(1,3),(1,-3) 8分
(3)∵y=-x 2+2x+8=-(x-1)2+9,∴抛物线顶点为D(1,9),对称轴为x=1
如图,以BC为直径作⊙E,则⊙E的半径为3
因为直径所对的圆周角为直角,圆外角为锐角,圆内角为钝角
又点A在x轴上方的的抛物线上,故当∠BPC为锐角时,3< PE ≤9 10分
(4)法一:由y=-x 2+2x+8,故关于x的一元二次方程x 2-2x+(y-8)=0有整数解
因此△x=4-4(y-8)=-4y+36是完全平方数,且△x=-4y+36≥0 11分
则y ≤9,又y是一个完全平方数,所以,y只能为0,1,4,9 12分
分别代入方程x 2-2x+(y-8)=0,又x为整数,解得
,,,∴m=4,n=-2,s=1 13分
∴法二:由图象不难看出3≤y ≤9,又y是一个完全平方数
所以y只能为0,1,4,9,分别代入y=-x 2+2x+8
D
又x为整数,解得,,,∴m=4,n=-2,s=1 14分
13.解:(1)2 14 2分
HC
(2)当0<t ≤5时,点E在BA上运动,如图①
过E作EG⊥BC于G,过A作AH⊥BC于H
由△EBG∽△ABH得=
即=,∴EG=t
∴y=BF·EG=t·t=t 2
即y=t 2(0≤t ≤5) 4分
HC
当7≤t <11时,点E在DC上运动,如图②
y=BC·EC=×5×(11-t )=-t+
即y=-t+(5≤t <11) 6分
(3)若△EBF与梯形ABCD的面积之比为1 : 2,则y=7
当0<t ≤5时,得t 2=7,解得t= 7分
当7≤t <11时,得-t+=7,解得t= 8分
故当t=或时,△EBF与梯形ABCD的面积之比为1 : 2
14.解:(1)①6 2分
图①
②证明:如图①,取EP中点G,连接MG
在梯形AEPD中,∵M、G分别是AD、EP的中点
∴MG=( AE+DP ) 3分
由折叠得∠EMP=∠B=,又G为EP的中点
∴MG= EP 4分
故EP=AE+DP 5分
(2)△PDM的周长保持不变
证明:如图②,设AM=x cm
在Rt△AEM中,由AE 2+x 2=( 4-AE )2,得AE=2-x 2 6分
∵∠DMP+∠AME=,∠AEM+∠AME=,∴∠DMP=∠AEM
又∵∠D=∠A=,∴△DMP∽△AEM 7分
MC
∴=,即=
∴C△DMP =·( 4+x )=8cm 8分
故△PDM的周长保持不变
15.解:(1)A(0,4),C(8,0) 2分
(2)存在
设直线AC的解析式为y=kx+b
则 解得
∴直线AC的解析式为y=-x+4 3分
G
∵抛物线的对称轴为x=-=3,∴D(3,0)
∴AD==5,DC=8-3=5,∴AD=DC
①当DE=DC时,点E与点A重合,∴E1(0,4)
4分
②当EC=DC时,则EC=5,又AC==
如图①,过E作EF⊥DC于F,则△EFC∽△AOC
∴=,即=,∴EF=,∴FC=
由-x+4=得x=8-
∴E2(8-,) 5分
③当ED=EC时,如图①,过E作EG⊥DC于G,则DG=DC=
∴OG=OD+DG=3+=,代入y=-x+4,得y=
∴E3(,) 6分
综上所述,符合条件的点E有三个:E1(0,4),E2(8-,),E3(,)
(3)方法1:如图②,过P作PH⊥OC,垂足为H,交直线AC于点Q
设P(m,-m 2+m+4),则Q(,-m+4)
①当0<m<8时
Q2
PQ=(-m 2+m+4)-(-m+4)=-m 2+2m
S△PAC =S△APQ + S△CPQ =×8×(-m 2+2m)=-(m-4)2+16
∴0<S≤16 7分
②当-2<m<0时
PQ=(-m+4)-(-m 2+m+4)=m 2-2m
S△PAC =S△CPQ - S△APQ =×8×(m 2-2m)=(m-4)2-16
∴0<S<20
故S=16时,相应的点P有且只有两个 8分
当m=4时,S=16,此时y=-m 2+m+4=6
∴P1(4,6) 9分
由(m-4)2-16=16,得m1=4+(舍去),m2=4-
∴y=-m 2+m+4=-2
∴P2(4-,-2) 10分
P2
方法2:如图③,将线段AC向上平移,记平移后的线段为A′C′,在A′C′与抛物线相切前,A′C′ 与抛物线始终有两个交点,加上线段AC下方的一个点,共有三个P点可以构成△PAC;当A′C′ 与抛物线相切时,满足条件的点P有且只有两个.
设直线A′C′ 的解析式为y=-x+b,代入抛物线的解析式得:
-x 2+x+4=-x+b,整理得:x 2-8x+4b-16=0
当A′C′ 与抛物线只有一个交点时,Δ=(-8)2-4(4b-16)=0
解得b=8,∴A′A=AO=4
又∵A′C′∥AC,∴△PAC和△AOC的公共边AC上的高也相等
∴S△PAC =S△AOC =×8×4=16
故当S=16时,相应的点P有且只有两个 8分
联立 解得
∴P1(4,6) 9分
将线段AC向下平移至经过原点O,并向上延长交抛物线于点P2,
则S△P2AC =S△P1AC =S△AOC =16,直线OP2的解析式为y=-x
把y=-x代入y=-x 2+x+4,得-x 2+x+4=-x
解得x1=4+(舍去),x2=4-,∴y=-2
∴P2(4-,-2) 10分
16.解:(1)过D作DE⊥x轴于E,则△PED∽△COP. 1分
∴===,∴PE=CO=1,DE=PO=t.
故D(t+1,). 2分
(2)S=PA·DE=(4-t)·=-t 2+t
=-(t-2)2+1. 3分
∴当t=2时,S最大,最大值为1. 5分
(3)∵∠CPD=90°,∴∠DPA+∠CPO=90°,∴∠DPA≠90°,故有以下两种情况:
①当∠PDA=90°时,由勾股定理得PD 2+DA 2=PA 2.
又PD 2=PE 2+DE 2=1+t 2,DA 2=DE 2+EA 2=t 2+(3-t)2,PA 2=(4-t)2.
∴1+t 2+t 2+(3-t)2=(4-t)2, 6分
即t 2+4t-12=0,解得t1=2,t2=-6(不合题意,舍去). 7分
②当∠PAD=90°时,点D在BA上,故AE=3-t=0,得t=3.
综上所述,当t=2秒或3秒时,△DPA为直角三角形. 9分
(4). 10分
17.解:(1)中线所在的直线 2分
(2)方法一:连接AC、BE
∵AB∥CE,AB=CE,∴四边形是平行四边形
∴BE∥AC 3分
∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC =S△AEC
∴S梯形ABCD =S△ACD+ S△ABC =S△ACD+ S△AEC =S△AED 5分
方法二:设AE与BC相交于点F
∵AB∥CE,∴∠ABF=∠ECF,∠BAF=∠CEF
又∵AB=CE,∴△ABF≌△ECF 4分
∴S梯形ABCD =S四边形AFCD+ S△ABF =S四边形AFCD+ S△ECF =S△AED 5分
过点A的梯形ABCD的面积等分线的画法如图1所示 7分
(3)能.连接AC,过点B作BE∥AC交的DC延长线于点E,连接AE
∴BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC =S△AEC
∴S四边形ABCD =S△ACD+ S△ABC =S△ACD+ S△AEC =S△AED 8分
∵S△ACD>S△ABC ,∴面积等分线必与CD相交
取DE的中点F,则直线AF即为要求作的四边形ABCD的面积等分线
画法如图2所示 10分
(4)画法如图3所示 12分
E
B
P
18.解:(1)证明:如图1,延长CO交AB于D,过点C作CG⊥x轴于点G
H
∵直线AB的函数关系式为y=-x+2,∴A(2,0),B(0,2)
∴AO=BO=2
又∵∠AOB=90°,∴∠DAO=45° 1分
∵C(-2,-2),∴CG=OG==2
∴∠COG=45°,∴∠AOD=45° 2分
∴∠ODA=90°
∴OD⊥AB,即CO⊥AB 3分
(2)要使△POA为等腰三角形
①当OP=OA时,点P与点B重合,∴P1(0,2)
②当PO=PA时,由∠OAB=45°知点P恰好是AB的中点,∴P2(1,1)
③当AP=AO时,则AP=2,过点P作PH⊥OA交OA于点H
在Rt△APH中,易得PH=AH=
∴OH=2-,∴P3(2-,)
所以,若△POA是等腰三角形,则点P的坐标的坐标为(0,2)或(1,1)或(2-,)
7分
(3)当直线PO与⊙C相切时,如图2,设切点为K,连接CK,则CK⊥OK
由点C的坐标为(-2,-2)易得CO=
又∵⊙C的半径为,∴∠COK=30°,∴∠POD=30°
又∠AOD=45°,∴∠POA=75°
F
同理可求出∠POA的另一个值为15°
∴∠POA等于75°或15° 10分
∵M为线段EF的中点,∴CM⊥EF
又∵∠COM=∠POD,CO⊥AB,∴△COM∽△POD
∴=,即MO·PO=CO·DO
∵PO=t,MO=s,CO=,DO=,∴st=4 12分
当PO过圆心C时,MO=CO=,PO=DO=,即MO·PO=4,也满足st=4
∴s=(≤t <) 14分
19.解:(1)∵四边形ABCD是正方形 ∴AB=AD,∠BAF=∠DAO=90°
在△ABF和△ADO中,∵∠ABF=∠ADO,AB=AD,∠BAF=∠DAO
∴△ABF≌△ADO,∴BF=DO 4分
(2)∵A(m,0),B(,0),∴OA=m,OB=,AB=-m
∵=,∴∠EBO=∠EBD
∵∠DAB=90°,∴BD为直径,∴∠BEO=∠BED=90°
又∵BE=BE,∴△BEO≌△BED,∴BD=BO=
在Rt△BCD中,∵BD=AB,∴=(-m)
∴m=-2
∵△ABF≌△ADO,∴AF=AO=m=-2
∴点F的坐标为(-2,-2) 6分
∵抛物线l经过O(0,0),B(,0)
∴设l的解析式为y=ax(x-),将F(-2,-2)代入得:a=
∴抛物线l的解析式为y=x 2-x 8分
(3)①如图,设直线BE与y轴相交于G,向上平移直线BE使平移后的直线经过原点O,由图象知,在平移前直线BE与新图象有1个公共点,平移到经过点O时与新图象有3个公共点
∴0<t <OG
设直线BE的解析式为y=kx+m,将B(,0),F(-2,-2)代入
易求出:y=(-1)x-4+ 10分
当x=0时,y=-4+,∴OG=4-
此时t的取值范围是:0<t <4- 11分
②如图,当直线BE向上平移到与抛物线相切后再向上平移时,直线BE与图象的交点又变为两个
设相切时直线BE的解析式为y=(-1)x+b
B
则方程组 有一个解 12分
于是方程-x 2+x=(-1)x+b有两
个相等的实数根
∴(-1)2-4××b=0,∴b=
此时直线BE的解析式为y=-1)x+
直线BE与y轴的交点为(0,)
∵+(4-)=-
∴此时t的取值范围是:t >- 13分
综上所述:t的取值范围为:0<t <4-或t >- 14分
20.解:(1)把B(-1,0)代入得:b=3a. 1分
H
∴y=ax 2-2ax-3a=a(x-1)2-4a
∴顶点D的坐标为D(1,-4a). 2分
(2)①在y=a(x-1)2-4a中,令y=0,得x=-1或x=3;
令x=0,得y=-3a
∴A(3,0),C(0,-3a)
且∠ACD=90° 3分
如图1,连结AC、AD、CD,设抛物线的对称轴与x轴交于点H,
过D作DF⊥y轴于F
在Rt△AOC中,AC 2=9a 2+3 2
在Rt△AHD中,AD 2=16a 2+2 2
在Rt△CDF中,CD 2=a 2+1 2
∵AD 2=AC 2+CD 2,∴16a 2+2 2=9a 2+3 2+a 2+1 2
∴a 2=1,又a <0,∴a=-1 4分
∴抛物线的解析式为y=-x 2+2x+3
②设点M(m,y1),则BF=m+1
∵MF : BF=1 : 2,∴MF=,即y1= 5分
∵点M(m,y1)在抛物线上,∴=-m 2+2m+3,解得:m=或m=-1(舍去)
E
把m=代入y=-m 2+2m+3,得y=
∴点M的坐标为M(,). 6分
又MP∥BO,MP=BO,∴点P的坐标为P(,)
由得点N的坐标为N(,). 7分
③如图3,设点Q(1,y),直线CD与x轴交于点G
由C(0,3),D(1,4)得直线CD的解析式为y=x+3 8分
令y=0,得G(-3,0)
设直线CD与⊙Q相切于点K,连结KQ,则△DKQ∽△DHG
G
∴= 9分
又DQ=4-y,DG=,KQ=QB=,GH=4
∴=,整理得:y 2+8y-8=0,解得:y=-4±
∴点Q的坐标为(1,-4+)或1,-4-). 10分
说明:由∠KDQ=45°,直接得出DQ=KQ,从而得4-y=,再求解,同样给分。
21.解:(1)由题意得B(0,3)
∵△AOB∽△BOC,∴∠OAB=∠OBC,=
∴=,∴OC=4
∴C(4,0) 1分
∵∠OAB+∠OBA=90°,∴∠OBC+∠OBA=90°
∴∠ABC=90° 2分
∵y=ax 2+bx+3图象经过点 A(-,0),C(4,0)
∴ 解得
∴y=-x 2+x+3 4分
(2)①如图1,当CP=CO时,点P在以BM为直径的圆上
M
∵BM为圆的直径,∴∠BPM=90°
∴PM∥AB,∴△CPM∽△CBA
∴=,即=,∴CM=5
∴m=-1 7分
M
②如图2,当PC=PO时,点P在OC垂直平分线上
∴PC=
由△CPM∽△CBA得CM=
∴m=4-=
③当OC=OP时,M点不在线段AC上
综上所述,m的值为-1或 9分
22.解:(1)当PQ∥AD时,x=4 2分
(2)如图,连接EP、EQ,则EP=EQ
设BE=y,则(8-x)2+y 2=(6-y)2+x 2
∴y= 4分
∵0≤y≤6,∴0≤≤6
∴≤x≤ 6分
E
(3)S△BPE =BE·BP=··(8-x)=
S△ECQ =CE·CQ=·(6-)·x=
∵AP=CQ,∴S梯形BPQC =S矩形ABCD=24
∴S=S梯形BPQC -S△BPE- S△ECQ =24--
==(x-4)2+12
即S=(x-4)2+12(≤x≤) 9分
当x=4时,S有最小值12
当x=或时,S有最大值
∴12≤S≤ 10分
23.解:(1)∵二次函数y=-x 2+c的图象经过点D(-,),∴=-×3+c
∴c=6 2分
(2)如图①,过B作BE⊥AC于E,过D作DF⊥AC于F,设AC与BD相交于点M
∵直线AC将四边形ABCD的面积二等分,∴S△ABC =S△ADC
∴△ABC和△ADC的公共边AC上的高也相等,即BE=DF
又∵∠BME=∠DMF,∠BEM=∠DFM=90°,∴△BME≌△DMF
F
∴BM=DM,即直线AC平分线段BD 5分
∵c=6,∴二次函数为y=-x 2+6,把y=0代入,得-x 2+6=0
解得x1=-,x2=,∴A(-,0),B(,0)
∵M是BD的中点,∴M(,)
设直线AC的解析式为y=kx+b,∵经过A、M两点
∴ 解得
N
∴直线AC的解析式为y=x+ 8分
(3)存在
由y=-x 2+6可得该二次函数图象的顶点为N(0,6),如图②,在Rt△AON中,易得AN==AB,于是以点A为圆心,为半径作⊙A,与二次函数的图象在x轴上方一定有交点Q,连接AQ,再作∠QAB的角平分线AP交抛物线于点P,连接BP、PQ,此时由“边角边”易得△AQP≌△ABP.由图可见,点P、Q分别有两个,其中一个Q点就是抛物线的顶点. 12分
24.解:(1)①根据题意得:B的坐标为(0,b),
F
∵OA=OB,∴A的坐标为(b,0)
代入y=kx+b得k=-1 2分
②如图甲,过P作x轴的垂线,垂足为F,连结OD
∵PC、PD是⊙O的两条切线,∠CPD=90°
∴∠OPD=∠OPC=∠CPD=45°
∴OD=PD=,OP=
∵点P在直线y=-x+4上,设P(m,-m+4)
则OF=m,PF=-m+4
∵∠PFO=90°,∴OF 2+PF 2=OP 2
即m 2+(-m+4)2=()2,整理得:m 2-4m+3=0
解得:m1=1,m2=3
∴点P的坐标为(1,3)或(3,1) 8分
(2)分两种情形
①当直线y=kx+b与x轴、y轴的正半轴相交时(如图乙),设直线y=kx+b交⊙O于点M、N,
连结OM、ON,过点O作OH⊥MN,垂足为H
图乙
∵直线y=kx+b将圆周分成两段弧长之比为1 : 2,∴∠MON=120°
∴∠OMN=∠ONM=30°,∴OH=OM=
又∵k=-,OB=b,∴OA=2b,AB=b
由Rt△BHO∽Rt△BOA得=,即=
∴b= 12分
②当直线y=kx+b与x轴、y轴的负半轴相交时,同理可求得b=-
故当b=或-时,直线y=kx+b将圆周分成两段弧长之比为1 : 2 14分
25.解:(1)∵∠BCD=75º,AD∥BC,∴∠ADC=105º 1分
由等边△DCE可知:∠CDE=60º,故∠ADE=45º
由AB⊥BC,AD∥BC可得:∠DAB=90º,∴∠AED=45º 3分
(2)方法一:由(1)知:∠AED=45º,∴AD=AE,故点A在线段DE的垂直平分线上
H
∴AC就是线段DE的垂直平分线,即AC⊥DE 5分
连接AC,∵∠AED=45º,∴∠BAC=45º
又∵AB⊥BC,∴AB=BC 7分
方法二:过D点作DH⊥BC于H,则DH=AB 4分
易证△DHC≌△CBE,∴DH=BC 6分
∴AB=BC 7分
(3)∵∠FBC=30º,∴∠ABF=60º
G
连接AF,设BF、AD的延长线相交于点G
∵∠FBC=30º,∠DCB=75º,∴∠BFC=75º,故BC=BF
由(2)知:BA=BC,故BA=BF
∵∠ABF=60º,∴AB=BF=FA,
又∵AD∥BC,AB⊥BC,∴∠FAG=∠G=30º
∴FG=FA=FB 10分
∵∠G=∠FBC=30º,∠DFG=∠CFB,FB=FG
∴△BCF≌△GDF 11分
∴DF=CF,即点F是线段CD的中点
∴=1 12分
26.解:(1)当a=0时,y=x+1,图象与x轴只有一个公共点 1分
当a≠0时,△=1-4a=0,a=,此时图象与x轴只有一个公共点
∴函数关系式为y=x+1或y=x 2+x+1 3分
(2)过点P作PC⊥x轴于点C
∵y=ax 2+x+1是二次函数,由(1)知该函数关系式为y=x 2+x+1
∴顶点B(-2,0),图象与y轴的交点坐标为A(0,1) 4分
∵以PB为直径的圆与直线AB相切于点B,∴PB⊥AB
∴∠PBC=∠BAO,∴Rt△PCB∽Rt△BOA
∴=,即=
∴PC=2BC 5分
设P(x,y),∵∠ABO是锐角,∠PBA是直角,∴∠PBO是钝角
∴x<-2,∴BC=-2-x,PC=-4-2x
即y=-4-2x,∴P点的坐标为(x,-4-2x)
∵点P在二次函数y=x 2+x+1的图象上
∴-4-2x=x 2+x+1 6分
解得x1=-2,x2=-10,∵x<-2,∴x=-10
∴P点的坐标为(-10,16) 7分
(3)点M不在抛物线y=ax 2+x+1上 8分
由(2)知:C为圆与x轴的另一交点,连接CM,CM与直线PB的交点为Q
过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE
则CM⊥PB,且CQ=MQ
∴QE∥MD,QE=MD,QE⊥CE
∵CM⊥PB,QE⊥CE,PC⊥x轴,∴∠QCE=∠EQB=∠CPB
M
∴tan∠QCE=tan∠EQB=tan∠CPB=
∴CE=2QE=2×2BE=4BE
又CB=8,故BE=,QE=
∴Q点的坐标为(-,)
可求得M点的坐标为(,) 11分
∵()2++1=≠
∴C点关于直线PB的对称点M不在抛物线y=ax 2+x+1上 12分
A
27.解:(1)证明:连接OD、BD,∵AB是⊙O的直径,∴∠ADB=90° 1分
∵AB=BC,∴AD=CD
又∵AO=BO,∴OD∥BC 2分
∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线 3分
(2)解:在Rt△CBD中,CD=,∠ACB=30°
A
∴BC===2,∴AB=2 4分
在Rt△CDE中,CD=,∠ACB=30°
∴DE=CD= 5分
在Rt△ODE中,OE=
== 6分
(3)-1<r<+1 12分
提示:如图,考虑⊙E与⊙O内切和外切两种情况
28.解:(1)(,) 1分
(2)由Rt△OAB的面积为得B(t,)
∴BD 2=AC 2+(AB-CD)2=(-t)2+(-)2
=t 2+-( t+)+4 ① 2分
=( t+)2-( t+)+2
=( t+-)2 3分
∴BD=| t+-|=t+- ② 4分
(注:不去绝对值符号不扣分)
(3)方法一:
若BO=BD,则BO 2=BD 2
在Rt△OAB中,BO 2=OA 2+AB 2=t 2+
由①得t 2+=t 2+-( t+)+4 5分
得t+=,∴t 2-t+1=0
∵Δ=()2-4=-2<0,∴此方程无解
∴BO≠BD 6分
方法二:
若BO=BD,则B点在OD的中垂线CM上
∵C(,0),在等腰Rt△OCM中,可求得M(,)
∴直线CM的函数关系式为y=-x+ ③ 5分
由Rt△OAB的面积为得B点坐标满足函数关系式y= ④
G
联立③,④得:x 2-x+1=0
∵Δ=()2-4=-2<0,∴此方程无解
∴BO≠BD 6分
方法三:
若BO=BD,则B点在OD的中垂线CM上,如图1
过点B作BG⊥y轴于G,CM交y轴于H
∵S△OBG =S△OAB =
而S△OMH =S△MOC =S△DOC =×××= 5分
显然与S△OMH >S△OBG矛盾
∴BO≠BD 6分
(4)如果△BDE为直角三角形,因为∠BED=45°
①当∠EBD=90°时,F、E、M三点重合,如图2
∵BF⊥x轴,DC⊥x轴,∴BF∥DC
∴此时四边形BDCF为直角梯形 7分
②当∠EDB=90°时,如图3
∵CF⊥OD,∴BD∥CF
又AB⊥x轴,DC⊥x轴,∴BF∥DC
∴此时四边形BDCF为平行四边形 8分
图2
下面证明平行四边形BDCF为菱形:
方法一:
在△BDO中,BO 2=OD 2+BD 2
∴t 2+=4+t 2+-( t+)+4
∴t+=
方法①:t 2-t+1=0,∵BD在OD上方
图3
解得t=-1,=+1或t=+1,=-1(舍去)
得B(-1,+1)
方法②:由②得:BD=t+-=-=
此时BD=CD=
∴此时四边形BDCF为菱形 9分
方法二:
在等腰Rt△OAE与等腰Rt△EDB中
∵OA=AE=t,OE=t,∴ED=BD=2-t
∴AB=AE+BE=t+(2-t)=-t
∴-t=,即t+=,以下同方法一
此时BD=CD=
∴此时四边形BDCF为菱形 9分
29.解:(1)①3 1分
②≤x< 2分
(2)①证明:方法一:
设< x >=n,则n-≤x<n+,n为非负整数 3分
又(n+m)-≤x+m<(n+m)+,且n+m为非负整数
∴< x+m >=n+m=m+< x > 4分
方法二:
设x=k+b,k为x的整数部分,b为其小数部分
1°当0≤b<时,< x >=k
∴m+x=(m+k)+b,m+k为m+x的整数部分,b为其小数部分
∴< m+x >=m+k
∴< x+m >=m+< x > 3分
2°当b≥时,< x >=k+1
则m+x=(m+k)+b,m+k为m+x的整数部分,b为其小数部分
∴< x+m >=m+k+1,∴< m+x >=m+< x >
综上所述,< x+m >=m+< x > 4分
②举反例:< 0.6 >+< 0.7 >=1+1=2,而< 0.6+0.7 >=< 1.3 >=1
∴< 0.6 >+< 0.7 >≠< 0.6+0.7 >
∴< x+y >=< x >+< y >不恒成立 5分
(3)方法一:
作y=< x >,y=x的图象,如图所示 6分
(注:只要求画出草图,如果没有把有关点画成空心点,不扣分)
y=< x >的图象与y=x的图象交于点(0,0),点(,1),点(,2)
∴x=0,, 7分
方法二:
2.5
∵x≥0,x为整数,设x=k,k为整数
则x=k,∴< k >=k
∴k-≤k <k+,k≥0 6分
∵0≤k ≤2,∴k=0,1,2
∴x=0,, 7分
(4)∵函数y=x 2-x+=(x-)2,n为整数
当n≤x<n+1时,y随x的增大而增大
∴(n-)2≤y<(n+1-)2,即(n-)2≤y<(n+)2 ①
∴n 2-n+≤y<n 2+n+,∵y为整数
∴y=n 2-n+1,n 2-n+2,n 2-n+3,…,n 2-n+2n,共2n个y
∴a=2n ② 8分
∵k>0,< >=n
则n-≤<n+,∴(n-)2≤k <(n+)2 ③
比较①,②,③得:a=b=2n 9分
图1
30.解:(1)(3,4),(9,4) 2分
(2)易知OB=AB=10
当点D在OA上运动,即0≤t ≤6时(如图1),OD=2t
∴S=×2t×4=4t(0≤t ≤6) 3分
当t=6时,S有最大值24
当点D在AB上运动,即6<t ≤11时(如图2)
图2
△OAB的AB边上高为:=
∵C为OB的中点,∴△BCD的BD边上高为
∵BD=OA+AB-2t=12+10-2t=22-2t
∴S=S△OCD = S△BCD =×(22-2t)×
=-t+(6<t ≤11) 5分
S随t的增大而减小,∴S无最大值
当点D在BO上运动时,O、C、D三点在一条直线上,△OCD不存在
综上所述,当t=6时,S最大 6分
(3)设t秒时,△OCD∽△ADE(如图3)
E
∵只考虑以点A、O为对应顶点的情况,且OD=AE=2t
若=,则AD=OC=5,∴OD=12-5=7,∴2t=7
∴t=3.5 8分
若=,即=,整理得2t 2+5t-30=0
解得t=(舍去)或t=
∵<=3,∴t=符合题意 10分
综上所述,当t=3.5秒或秒时,以点D,A,E为顶点的三角形与△OCD相似
12分
31.解:(1)∵抛物线y=x 2+bx+c交x轴于A(1,0)、B(3,0)两点
∴y=(x-1)(x-3),即y=x 2-4x+3
∴b=-4,c=3,抛物线的对称轴为x=2 3分
(2)由y=x 2-4x+3可得C点坐标为(0,3),D点坐标为(2,-1)
设抛物线的对称轴交x轴于点F,则F(2,0)
∵△OFE是等腰直角三角形,∴E(2,2)
△DFB是等腰直角三角形,∴∠BOE=∠OBD=45°
∴OE∥BD,∴四边形ODBE是梯形 5分
在Rt△ODF和Rt△EBF中
OD===,BE===,
∴OD=BE,∴四边形ODBE是等腰梯形 7分
(3)存在 8分
Q2
由题意得:S四边形ODBE =OB·DE=×3×3= 9分
设点Q坐标为(x,y),由题意得:
S△OBQ =OB·| y|=| y|=S四边形ODBE =×=
∴y=±1
当y=1时,即x 2-4x+3=1,∴x1=2+,x2=2-
∴Q点坐标为(2+,1)或(2-,1) 11分
当y=-1时,即x 2-4x+3=-1,∴x=2
∴Q点坐标为(2,-1)
综上所述,抛物线上存在三点Q(2+,1),Q(2-,1),Q(2,-1)
使得S△OBQ =S四边形ODBE 12分
