
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的相反数是( )
A. B.2 C. D.
2.计算:(a-b)(a+b)(a2+b2)(a4-b4)的结果是( )
A.a8+2a4b4+b8 B.a8-2a4b4+b8 C.a8+b8 D.a8-b8
3.对于函数y=2x﹣1,下列说法正确的是( )
A.它的图象过点(1,0) B.y值随着x值增大而减小
C.它的图象经过第二象限 D.当x>1时,y>0
4.已知是整数,当取最小值时,的值是( )
A.5 B.6 C.7 D.8
5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )
A.平均数 B.中位数 C.众数 D.方差
6. 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1 B.2 C.3 D.4
7.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为( )
A.2a+b B.-2a+b C.b D.2a-b
7.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A.140° B.100° C.50° D.40°
10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )
A.∠A=∠1+∠2 B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
二、填空题(本大题共6小题,每小题3分,共18分)
1.已知、为两个连续的整数,且,则__________.
2.已知, 则_______.
3.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.
4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为______。
5.如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置.若,则等于________.
6.如图一个圆柱,底圆周长10cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行_______cm .
三、解答题(本大题共6小题,共72分)
1.解方程:
2.先化简,再求值:÷-,其中a=(3-)0+-.
3.若方程组的解满足x为非负数,y为负数.
(1)请写出_____________;
(2)求m的取值范围;
(3)已知,且,求的取值范围.
4.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.
(1)当x≥30,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
参
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、B
3、D
4、A
5、D
6、C
7、C
8、D
9、B
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、7
2、0
3、4
4、3或.
5、50°
6、
三、解答题(本大题共6小题,共72分)
1、,.
2、,;.
3、(1)1;(2)m>2;(3)-2<2m-3n<18
4、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.
5、(1)略
(2)等腰三角形,理由略
6、(1)2元;(2)至少购进玫瑰200枝.
