
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()
A.60种
B.120种
C.240种
D.480种
8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为()
A.
B.
C.
D.
17.(12分)
某厂研究了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设
备
9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7
新设
备
10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5 旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别
记为s
12和s
2
2
(1)求, s
12,s
2
2;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果
-≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
21年全国甲卷
2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
10.将4个1和2个0随机排成一行,则2个0 不相邻的概率为
A. B. C. D.
17. (12 分)
甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
⑵能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异? 附:
20年全国1卷
5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο
)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据
i i (,)x y (1,2,...,20)i =得到下面的散点图:
由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是
A .y a bx =+
B .2
y a bx =+ C .x y a be =+ D .ln y a b x =+
2
5
()()
y
x x y
x
++的展开式中33
x y的系数为
A. 5
B. 10
C. 15
D. 20
19. (12分)
甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:
累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.
经抽签,甲、乙首先比赛,丙轮空. 设每场比赛双方获胜的概率都为1
2
.
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
20年全国2卷
3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名
B.18名
C.24名
D.32名
14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种。
18.(12分)
某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据
i i x y i=20⋅⋅⋅(,)(1,2,),其中i x 和i
y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得
()()()()2
2
202020
20
20
i
i
i
i
i
i
i=1
i=1
i=1
i=1
i=1
x =60y =1200x -x =80y -y =9000x -x y -y =800∑∑∑∑∑,,.
(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样
区这种野生动物数量的平均数乘以地块数) (2) 求样本(
)()
,1,2,i i x y i =…,20的相关系数(精确到0.01);
(3) 根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表
性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。
附:相关系数()()
y
n
i
i
x x y
r --
=
∑ 1.414≈.
20年全国三卷
3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且4
1
1i i p ==∑,
则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ====
14.
262
x )x +(的展开式中常数项是______(用数字作答). 18.(12分)
[0,200] (200,400] (400,600] 锻炼人次
空气质量等级
1(优) 2 16 25
2(良) 5 10 12 3(轻度污染) 6 7 8
4(中度污染)7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”。根据所给数据,完成下面的22
⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400 空气质量好
空气质量不好
附:,
2019年全国一卷
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
A .516
B .1132
C .2132
D .1116
15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛
结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互,则甲队以4∶1获胜的概率是____________.
21.(12分)
为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,
若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .
(1)求X 的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.
(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;
(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.
2019年全国2卷
5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分
A.中位数B.平均数
C.方差D.极差
13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.
18.(12分)
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
2019年全国3卷
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为
A.0.5 B.0.6 C.0.7 D.0.8
4.(1+2x2 )(1+x)4的展开式中x3的系数为
A.12 B.16 C.20 D.24 17.(12分)
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
