最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

湖南省常德一中2015-2016学年度第一学期高一实验班招生数学试题

来源:动视网 责编:小OO 时间:2025-10-03 00:36:10
文档

湖南省常德一中2015-2016学年度第一学期高一实验班招生数学试题

2015-2015学年度第一学期湖南常德一中实验班招生学校姓名性别联系电话数学试题学校姓名性别联系电话欢迎你参加考试!做题时要认真审题,积极思考,细心答题,充分发挥你的水平(时量:60分钟;满分:100分注意合理分配时间)一、选择题:(每个题目只有一个正确答案,每题6分,共36分)1、一条弦分圆周为5:7,这条弦所对的圆周角为()A.75°B.105°C.60°或120°D.75°或1052、如下图是一个无盖正方体盒子的表面展开图,A、B、C为图上三点,则在正方体盒子中,∠ABC的度数为()A
推荐度:
导读2015-2015学年度第一学期湖南常德一中实验班招生学校姓名性别联系电话数学试题学校姓名性别联系电话欢迎你参加考试!做题时要认真审题,积极思考,细心答题,充分发挥你的水平(时量:60分钟;满分:100分注意合理分配时间)一、选择题:(每个题目只有一个正确答案,每题6分,共36分)1、一条弦分圆周为5:7,这条弦所对的圆周角为()A.75°B.105°C.60°或120°D.75°或1052、如下图是一个无盖正方体盒子的表面展开图,A、B、C为图上三点,则在正方体盒子中,∠ABC的度数为()A
           2015-2015学年度第一学期湖南常德一中实验班招生学校                                   姓名                   性别        联系电话                           

数学试题学校                                   姓名                   性别        联系电话                           

欢迎你参加考试!做题时要认真审题,积极思考,细心答题,充分发挥你的水平

(时量: 60分钟;满分:100分  注意合理分配时间 )

   

一、选择题:(每个题目只有一个正确答案,每题6分,共36分)

1、一条弦分圆周为5:7,这条弦所对的圆周角为             (  )

   A.75 °         B.105°        C.60°或120°       D.75 °或105

2、如下图是一个无盖正方体盒子的表面展开图,A、B、C为图上三点,则在正方体盒子中,

∠ABC的度数为(      )

A. 120°          B.90°          C. 60°            D.45°

3、如果有四个不同的正整数m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,

那么m+n+p+q等于(      )

A.21               B. 24             C. 26            D.28

4、如图,梯形ABCD的对角线交于O,过O作两底的平行线分别交两腰于M、N,若AB=4,CD=1,则MN的长为(    )

A、1.2                B、1.4            C、1.6                D、1.8

5.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是(        )

A.4               B.3            C.2               D.1

6、如果实数(      )

A. 7                 B. 8             C. 9            D.10

二.填空题:(每题6分,共30分)

7、若是第三象限内的点,且为整数,则=          .

8、在△ABC中,三个内角的度数均为整数值,且∠A<∠B<∠C,5∠C=9∠A,

则∠B的度数是              .

9、如图3所示的长方形中,甲、乙、丙、丁四块面积相等,甲的长是宽的2倍,

设乙的长和宽分别是                 .

10、已知平面直角坐标系内A、B两点的坐标分别是轴上的一个动点,则当           时,△PAB的周长最短.

11、如右上图,平行四边形ABCD中, ABD=300,AB=4,AEBD,CFBD,且E、F恰好是BD的三等分点,又M、N分别是AB,CD的中点,那么四边形MENF的面积是                     

三、解答题(本大题共3题,12、13题11分,14题12分,共34分)

12、已知求的值

13、如图13,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.

(1)求BC的长;

(2)当MN∥AB时,求t的值;

(3)试探究:t为何值时,△MNC为等腰三角形

14、如图,抛物线y=-x 2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.

(1)直接写出A、B、C三点的坐标和抛物线的对称轴;

(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.

①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

②设△BCF的面积为S,求S与m的函数关系式.

                                     参及评分标准:

一.选择题:(每题6分,共36分)

1-6:DCD,CAA

二.填空题:(每题6分,共30分)

7. 2010                   8. _54或68   (填一个得3分)              9.  9:2                        

10. 3.5或              11.                     

三、解答题:(13、14每题11分,15题12分,共34分)

12、解:  ①

同理得:②,       ③

将①②③式相加得:④               ------(4分 ) 

④-①得                         ------(6分)

④-②得                          ------(8分)

④-③得                          ------(10分)

∴                ------(11分)

 

13解:(1)过A、D分别作AE⊥BC于E,DF⊥BC于F.

          ∵∠B=45°∴△AEB为等腰直角三角形,

          ∴BE = AE   又AB2=AE2+BE2 

           即(4)2=2BE2  ∴得BE = 4,AE=4,

     又∵AD∥BC,∴EF=AD=3,DF=AE=4.

     在Rt△DFC中,由勾股定理知:

          FC2=DC2-DF2=52-42=32    ∴FC=3,

          ∴BC=BE+EF+FC=4+3+3=10.       ------(3分 )

   (2)当MN∥AB时,过N作NG⊥BC,

          ∵在Rt△DFC与Rt△NGC中,∠C共用 ,∴Rt△DFC∽ Rt△NGC,

          ∴==,又CN=t,DC=5,FC=3,可得GN=t,GC=t.

          且BM=2t,∠NMC=∠B=45°,∴MG=GN=t,

          由BC=BM+MG+GC得  10=2t+t+t ,  解得  t=

          ∴当MN∥AB时,t=.            ------(6分 )

    (3)若△MNC为等腰三角形,则有三种情况:

           ①当MN为底时,有MC=NC,∴10-2t=t,∴t=;------(7分 )

②当MC为底时,MN=NC.

同(2)过N作NG⊥BC,则有MG=GC,

同(2)Rt△DFC∽ Rt△NGC,    得  GC=t,

              又由 BC=BM+MG+GC得   10=2t+t+t,解得t=  ------(9分 )

③当NC为底时,MC=MN.

 过M作MH⊥NC,则有CH=HN,  ∵CN=t,∴CH=HN=,

             在Rt△CMH与Rt△CFD中,∠C共用 ,

∴Rt△CMH∽Rt△CFD,∴ =,

∵MC=BC-BM=10-2t,FC=3,DC=5,

∴有=,解得t=,   ------(10分 ) 

综上所述:当t=,或t=或t=时,△MNC为等腰三角形  ----------(11分)

14、解:(1)A(-1,0),B(3,0),C(0,3).  2分

抛物线的对称轴是:x=1.          3分

(2)①设直线BC的解析式为:y=kx+b.

将B(3,0),C(0,3)分别代入得:

     解得

∴直线BC的解析式为y=-x+3.

当x=1时,y=-1+3=2,∴E(1,2).

当x=m时,y=-m+3,∴P(m,-m+3).  4分

将x=1代入y=-x 2+2x+3,得y=4,∴D(1,4).

将x=m代入y=-x 2+2x+3,得y=-m 2+2m+3.

∴F(m,-m 2+2m+3).     5分

∴线段DE=4-2=2,线段PF=-m 2+2m+3-(-m+3)=-m 2+3m    6分

∵PF∥DE,∴当PF=DE时,四边形PEDF为平行四边形.

由-m 2+3m=2,解得:m1=2,m2=1(不合题意,舍去).

∴当m=2时,四边形PEDF为平行四边形.    8分

②设直线PF与x轴交于点M.

由B(3,0),O(0,0),可得:OB=OM+MB=3.

则S=S△BPF +S△CPF    9分

=PF·BM+PF·OM

=PF·OB

=(-m 2+3m)×3

=-m 2+m(0≤m≤3)

即S与m的函数关系式为:S=-m 2+m(0≤m≤3).    12分

说明:1.第(1)问,写对1个或2个点的坐标均给1分,写对3个点的坐标得2分;

2.第(2)问,S与m的函数关系式未写出m的取值范围不扣分.

文档

湖南省常德一中2015-2016学年度第一学期高一实验班招生数学试题

2015-2015学年度第一学期湖南常德一中实验班招生学校姓名性别联系电话数学试题学校姓名性别联系电话欢迎你参加考试!做题时要认真审题,积极思考,细心答题,充分发挥你的水平(时量:60分钟;满分:100分注意合理分配时间)一、选择题:(每个题目只有一个正确答案,每题6分,共36分)1、一条弦分圆周为5:7,这条弦所对的圆周角为()A.75°B.105°C.60°或120°D.75°或1052、如下图是一个无盖正方体盒子的表面展开图,A、B、C为图上三点,则在正方体盒子中,∠ABC的度数为()A
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top