最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

画图说明TCP协议的三次握手报文交换过程

来源:动视网 责编:小OO 时间:2025-10-03 00:35:31
文档

画图说明TCP协议的三次握手报文交换过程

画图说明TCP协议的三次握手报文交换过程,并进一步说明其解决了俩次握手的什么弊端?为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误简述DNS服务器的类型,作用及层次类型1.根DNS服务器:在Internet上有13个根服务器,标号为A~M,用来管理互联网的主目录。2.顶级域(TLD)服务器:这些服务器负责项级域名和所有国家的项级域名。com,org,edu3.权威DNS服务器:在Internet上具有公共可访问主机的每个组织机构必须提供公共可访问的DNS记录。作用:进行主机名到
推荐度:
导读画图说明TCP协议的三次握手报文交换过程,并进一步说明其解决了俩次握手的什么弊端?为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误简述DNS服务器的类型,作用及层次类型1.根DNS服务器:在Internet上有13个根服务器,标号为A~M,用来管理互联网的主目录。2.顶级域(TLD)服务器:这些服务器负责项级域名和所有国家的项级域名。com,org,edu3.权威DNS服务器:在Internet上具有公共可访问主机的每个组织机构必须提供公共可访问的DNS记录。作用:进行主机名到
画图说明TCP协议的三次握手报文交换过程,并进一步说明其解决了俩次握手的什么弊端?

为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误

简述DNS服务器的类型,作用及层次类型

1.根DNS服务器:在Internet上有13个根服务器,标号为A~M,用来管理互联网的主目录。

2.顶级域(TLD)服务器:这些服务器负责项级域名和所有国家的项级域名。com,org,edu 

3.权威DNS服务器:在Internet上具有公共可访问主机的每个组织机构必须提供公共可访问的DNS记录。

作用:进行主机名到IP地址转换的服务

简述解决流水线差错回复的两种基本方法,即回退N步和选择重传

GBN(后退N步协议)

1.允许发送多个分组⽽不需要等待确认,受限于窗⼝长度N 

2.累积确认 数据按序交付,失序则丢弃 

3.回退机制 表示需要再退回来重传已发送过的N个分组  

SR(选择重传)

1.窗⼝长度必须小于或等于序号空间⼤小的⼀半

2.逐⼀确认 

3.只重发未被确认的分组 

4.失序缓存,按序交付

简述DHCP客户服务器交互的4个步骤

∙DHCP服务器发现客户通过广播DHCP发现报文,发现一个要与其交互的DHCP服务器

∙DHCP服务器提供DHCP收到发现报文后,响应一个DHCP提供报文,仍然使用广播地址,因为此时新客户并没有IP地址

∙DHCP请求客户从提供中选一个,向选中的服务器提供一个DHCP请求报文进行响应

∙DHCP ACK收到DHCP请求报文后,用DHCP ACK报文对其进行响应

简述什么是无线链路的隐藏终端问题

在通信领域,基站A向基站B发送信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引起信号冲突,最终导致发送至B的信号都丢失了。

简述公开密钥系统的工作原理,假设Alice要向Bob发送的报文为m

Bob有两个密钥,一个任何人都可以得到的公钥,一个是只有Bob有的私钥,Kb+和Kb-表示。Ailce用公钥和明文经过加密算法得到密文,Bob用私钥和解密算法将密文转化为明文

假设A要想B发送的报文为m,用于机密性的随即对话密钥为Ks,A的公钥和私钥分别为Ka+和Ka-,B的公钥和私钥分别问Kg+和Kg-,用于鉴别的散列函数为H。请画图说明一个能够提供机密性、发送方鉴别和报文完整性的电子邮件系统,注意。请完整的画出Alice的发送过程和Bob的接收过程

简述分组交换网中的时延类型以及这些时延与结点总时延的关系

分组从一台主机出发,经过一些列路由器传输,在另一台主机中结束它的历程。每个节点都经受了不同类型的时延,时延分为四类。

∙一、节点处理时延 (nodal processing delay)

检查分组首部和决定将该分组导向何处所需要的时间是处理时延的一部分,还有可能包括检查比特级别的差错所需要的时间。高速路由器的处理时延通常是微秒或更低的数量级。

∙二、排队时延 (queuing delay)

分组在链路上等待传输时,经受排队时延。一个特定分组的排队时延取决于先期到达的、正在排队等待向链路传输的分组数量。

到达分组期待发现的分组数量是到达该队列的流量强度和性质的函数。

实际的排队时延可以是毫秒到微秒量级。

∙三、传输时延 (transmission delay)

将分组的比特推向链路所需要的时间。假设分组长度是L比特,链路传输速率(带宽有关)是R bps,则传输时延是L/R。

实际的传输时延在毫秒到微秒量级。

∙四、传播时延 (propagation delay)

即比特从链路起点到链路所需要的时间。传播速率取决于传输介质。假设链路距离是d,链路传播速率是s,则传播时延是d/s。

在广域网中,传播时延是毫秒量级。

总时延

节点的总时延如下:

简述TCP协议的慢启动过程

慢启动通过逐步增大拥塞窗口的值来控制网络拥塞。

慢启动机制规定:

∙拥塞窗口的初始值为1

∙每收到一个对发出的数据段的ACK确认,便将拥塞窗口的值增加1倍

每完成一次传输轮次,拥塞窗口的值就翻倍,即拥塞窗口随着传输轮次的增加成指数增长。

随着传输轮次的增加,拥塞窗口的值会变得很大,因此TCP拥塞控制給慢启动增加一个阈值(又称慢启动门限),当拥塞窗口>阈值时,就要进行尝试拥塞避免。

当 拥塞窗口 <阈值 时,使用慢启动算法

当 拥塞窗口 >阈值 时,使用拥塞避免算法

当 拥塞窗口 = 阈值 时,既可以使用慢启动算法,也可时使用拥塞避免算法。

随着网络拥塞的出现和变化,阈值也会不断变化。TCP拥塞控制中,阈值的初始值为16

简述虚电路(VC)的组成及建立过程

发送方发送含有地址信息的特定的控制信息块(如:呼叫分组),该信息块途经的每个中间结点根据当前的逻辑信道(LC)使用状况,分配LC,并建立输入和输出LC映射表,所有中间结点分配的LC的串接形成虚电路(VC)。

简述地址解析协议ARP的作用及作用范围

使用地址解析协议,可根据网络层IP数据包包头中的IP地址信息解析出目标硬件地址(MAC地址)信息,以保证通信的顺利进行。

作用范围是在网络层

简述什么是无线链路的隐藏终端问题

隐藏终端(Hidden Stations):在通信领域,基站A向基站B发送信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引起信号冲突,最终导致发送至B的信号都丢失了。

简述报文鉴别码MAC的含义与作用

一个报文的可靠性要比它的秘密性重要许多倍。“可靠”一词意味着报文没有被改变或受到操纵,因而是可信的。为此,一个计算的报文鉴别码MAC(Messεtge Authentication Code)被附加在报文之后,同时传送给收件人,收件人自己可以计算报文的MAC并与接收到的MAC相比较,如果它们相同,则报文在旅程中未被改变,保障数据的可靠性

简述交换机与路由器的异同

同:

交换机和路由器都可用来交换网络

异:

∙工作层次不同,交换机工作在数据链路层,路由器工作在网络层

∙数据转发所依据的对象不同,交换机利用MAC地址(物理地址)确定转发数据目的地址,而路由器利用的是IP地址

比较LS算法和DV算法的特点

LS算法和DV算法,这两种算法各有特点,分述如下:

∙1)工作原理的不同。

LS算法中,网络拓扑和所有的链路费用都是已知的,也就是说可用来做LS算法的输入。

DV算法中,每个节点仅与他的直接邻居交谈,但它为他的邻居提供了从其自己到网络中所有其他节点的最低费用。

∙2)算法结构不同。

LS算法是一种全局信息的算法,而DV算法是一种迭代的,异步的和分布式的算法。

∙3)时间复杂性。

LS算法在最差情况下的时间复杂度为n的平方阶。

DV算法,它存在对好消息的反应迅速,但对坏消息却反应迟钝。特别是对坏消息存在计数无穷大问题。当链路的权值变化很大时,它的时间复杂性也就很难确定了。

∙4)可扩展性。

DV算法可扩展性差。相对而言,LS算法可扩展性好,可靠。

∙5)跳数的。

DV使用跳数或向量来确定从一个设备到另一个设备的距离。不考虑每跳链路的速率。LS没有跳数的,使用“图形理论”算法或最短路径优先算法。

数据链路层提供的许多服务和运输层提供的服务是非常相似的,试述二者的的异同

∙相同:

二者都提供了差错检测、流量控制 

∙不同:

差错检测方面:对于数据链路层而言,只保证接受到的数据没问题,至于中间丢失的数据压根不管。而运输层则对中途丢失的数据也做管理,它会通知给发送端。

流量控制方面:控制的对象不同。

试举例说明,为什么TCP在建立连接时要用三次握手?

假设有A和B两端要进行通信:

1.第一次:首先A发送一个(SYN)到B,意思是A要和B建立连接进行通信;如果是只有一次握手的话,这样肯定是不行的,A压根都不知道B是不是收到了这个请求。

2.第二次:B收到A要建立连接的请求之后,发送一个确认(SYN+ACK)给A,意思是收到A的消息了,B这里也是通的,表示可以建立连接;如果只有两次通信的话,这时候B不确定A是否收到了确认消息,有可能这个确认消息由于某些原因丢了。

3.第三次:A如果收到了B的确认消息之后,再发出一个确认(ACK)消息,意思是告诉B,这边是通的,然后A和B就可以建立连接相互通信了;这个时候经过了三次握手,A和B双方确认了两边都是通的,可以相互通信了,已经可以建立一个可靠的连接,并且可以相互发送数据。

4.第四次:这个时候已经不需要B再发送一个确认消息了,两边已经通过前三次建立了一个可靠的连接,如果再发送第四次确认消息的话,就浪费资源了。

发送窗口的大小取决于流量控制还是拥塞控制

TCP的慢启动机制、拥塞避免机制和加速递减机制都是通过改变拥塞窗口的大小来时对发送方的发送窗口进行控制。所以是取决于网络的拥塞控制,并且动态地在变化。

什么是因特网提供给其应用程序的两类服务?这些服务的每一类都有哪些特征?

答:互联网向其应用提供两种服务:面向连接的(TCP)和面向无连接的(UDP)。每一种互联网应用采取其中的一种。

  面向连接服务的原理特征:

1 在都没有发送数据之前2个端系统先进性“握手”。

2 提供可靠的数据传送。也就是说,连接的一方将所有的应用数据有序且无差错的传送到连接的另一方。

3 提供流量控制。也就是确报链接的任何一方不会过快的发送过量的分组而淹没另一方。

4 提供拥塞控制。即管理应用发送进网络的数据量,帮助防止互联网进入迟滞状态。

●无连接的服务特征

1 没有握手;

2 没有可靠数据传送的保证;s

3 没有流量控制或者拥塞控制;

简述TCP的拥塞控制策略。

慢启动

拥塞避免

快重传

快回复

电路交换和分组交换

1、电路交换: 在通信进行过程中,网络为数据传输在传输路径上预留资源,这些资源只能被这次通信双方所使用;

2、分组交换:数据被分成一个一个的分组,每个分组均携带目的地址,网络并不为packet传输在沿途packet switches上预留资源,packet switches为每个packet确定转发方向.

多路分解多路复用

将运输层报文段中的数据交付到正确的套接字的工作称为多路分解

在原主机从不同套接字中收集数据块,并未每个数据块封装上首部信息,从而生成报文段传递给网络层,所有这些工作称为多路复用

chapter 4

路由器的

chapter 6

多路复用的三个类型

1.信道划分协议

2.随机接入协议

3.轮流协议

信道划分协议

TDM

时分多路复用 time division multiple

FDM

频分多路复用 frequency division multiple

CDMA

code division multiple access码分多址

随机接入协议

时隙ALOHA

∙当结点有一个新帧要发送时,它等到下一个时隙开始并在该时隙传输整个帧

∙如果没有碰撞就成功传输该帧

∙如果碰撞,该结点在时隙结束之前检测到碰撞.结点以概率P重传该帧,直到该帧传出去.

ALOHA

ALOHA是一个非时隙,分散的协议.当有帧需要传输时,ALOHA会马上传输.如果碰撞

了,ALOHA会以概论P重传该帧.否则,该结点等待一个帧传输的时间.

CSMA

载波侦听多路访问 carrier sense multiple access

为什么所有结点都载波侦听,还是会碰撞? 

因为信道传输会有时延(虽然速度接近光).

CSMA/CD

carrier sense multiple access/ collision detection 碰撞检测

CSMA/CD运行的过程 

1. 适配器从网络层一条获得数据报,封装成帧,将其放入帧适配器缓存中. 

2. 如果适配器监听到信道空闲,它将传输.如果信道忙,就等待到不忙 

3. 传输时未监听到其他结点的信号能量,完成传输.如果检测到,就中止传输. 

4. 中止后,等待一个随机时间量(二进制指数后退),返回步骤2.

CSMA/CA移动网络

1.在发送信号之前,即侦听到信道空闲时,会在一个分布式帧间间隔DIFS(Distributed Inter-frame Spacing)的短时间后发送数据帧.

2.若信道繁忙,会选取一个随机回退值,每当侦听到信道空闲时此回退值就会减小,信道繁忙则会冻结回退值,当回退值为0时,发送数据帧

3.发送数据帧并等待确认,目的地则会在等待一个被称为短帧间间隔SIFS(Short inter-frame spacing)的短时间后发送确认帧.

4.如果源收到确认帧,表示被正确接收了,需要发送其他帧会从第二部开始.如果未收到确认,进入第二部的回退阶段,并从更大的范围选取回退值,如果发送多次,放弃发送该帧.

轮流协议

轮询协议

令牌传递协议

chapter 8

数字签名

在数字领域,人们通常需要指出一个文件的所有者或创造者,或表明某人认可一个文件内容,数字签名就是一种在数字领域实现这些目标的密码技术

文档

画图说明TCP协议的三次握手报文交换过程

画图说明TCP协议的三次握手报文交换过程,并进一步说明其解决了俩次握手的什么弊端?为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误简述DNS服务器的类型,作用及层次类型1.根DNS服务器:在Internet上有13个根服务器,标号为A~M,用来管理互联网的主目录。2.顶级域(TLD)服务器:这些服务器负责项级域名和所有国家的项级域名。com,org,edu3.权威DNS服务器:在Internet上具有公共可访问主机的每个组织机构必须提供公共可访问的DNS记录。作用:进行主机名到
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top