
姓名: 家长签字:
1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( )
(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3
2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( )
(A)一象限 (B)二象限 (C)三象限 (D)四象限
3.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( )
(A)y1>y2 (B)y1=y2 (C)y1 5.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 6.要得到y=-x-4的图像,可把直线y=-x( ). (A)向左平移4个单位 (B)向右平移4个单位 (C)向上平移4个单位 (D)向下平移4个单位 7.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( ) (A)m>- (B)m>5 (C)m=- (D)m=5 8.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ). (A)k< (B) 9.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A)4条 (B)3条 (C)2条 (D)1条 10.已知abc≠0,而且=p,那么直线y=px+p一定通过( ) (A)第一、二象限 (B)第二、三象限 (C)第三、四象限 (D)第一、四象限 11.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是( ) (1)小明经过对数据探究,发现:桌高y是凳高x 的一次函数,请你求出这个一次函数的关系式;(不 要求写出x的取值范围); (2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由. 3.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米? 4.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6,求正比例函数和一次函数的解析式. 5.在直角坐标系x0y中,一次函数y=x+的图象与x轴,y轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式. 6.已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.
2.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档 第二档 第三档 第四档 凳高x(cm) 37.0 40.0 42.0 45.0 桌高y(cm) 70.0 74.8 78.0 82.8
