
学校:___________姓名:___________班级:___________考号:___________
一、选择题(本大题共10小题,共30.0分)
1.直角三角形的两条直角边长分别是3,4,则该直角三角形的斜边长是( )
A.2 B.3 C.4 D.5
2.在实数-,0,π,,1.41中,无理数有( )
A.4个 B.3个 C.2个 D.1个
3.如图,下列条件不能判断直线a∥b的是( )
A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180° D.∠2+∠4=180°
4.在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的( )
A.平均数 B.中位数 C.众数 D.方差
5.如果所示,若点E的坐标为(-2,1),点F的坐标为(1,-1),则点G的坐标为( )
A.(1,2) B.(2,2) C.(2,1) D.(1,1)
6.下列命题中,真命题有( )
①两条平行直线被第三条直线所截,内错角相等;②两边分别相等且其中一组等边的对角也相等的两个三角形全等;③三角形对的一个外角大于任何一个内角;④如果a2=b2,那么a=b.
A.1个 B.2个 C.3个 D.4个
7.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为( )
A.-1 B.1 C.2 D.3
8.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案( )
A.2 B.3 C.4 D.5
9.如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C⇒B⇒A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系( )
A. B. C. D.
10.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为( )
A.5 B.3 C.2 D.3
二、填空题(本大题共5小题,共15.0分)
11.化简: = ______ .
12.如图,AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的角平分线FP相交于点P.若∠BEP=46°,则∠EPF= ______ 度.
13.若x,y满足+(2x+3y-13)2=0,则2x-y的值为 ______ .
14.平面直角坐标系内的一条直线同时满足下列两个条件:①不经过第四象限;②与两条坐标轴所围成的三角形的面积为2,这条直线的解析式可以是 ______ (写出一个解析式即可).
15.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,请写出所有满足条件的点B的坐标 ______ .
三、解答题(本大题共7小题,共55.0分)
16.如图,小正方形的边长为1,△ABC的三个顶点都在小正方形的顶点处,判断△ABC的形状,并求出△ABC的面积.
17.(1)请写出一个二元一次方程组,使该方程组无解;
(2)利用一次函数图象分析(1)中方程组无解的原因.
18.建立一个平面直角坐标系.在坐标系中描出与x轴的距离等于3与y轴的距离等于4的所有点,并写出这些点之间的对称关系.
19.为了迎接郑州市第二届“杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.
(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:
| 平均数(分) | 中位数(分) | 众数(分) | 方差 | |
| 一班 | a | b | 90 | 106.24 |
| 二班 | 87.6 | 80 | c | 138.24 |
20.如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.
(1)用含有α的代数式表示∠COE的度数;
(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.
21.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:
(1)A、C两村间的距离为 ______ km,a= ______ ;
(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?
22.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.
(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;
(2)如图2,坐标系xOy内有一点D(-1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.
(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE-DE|的最大值,并写出此时点E的坐标.
