
学校:___________姓名:___________班级:___________考号:___________
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
绝密★启用前
凌源市金鼎高级中学
2019-2020学年度3月月考数学试卷
考试范围:第五章统计与概率;考试时间:120分钟;试卷总分:150分命题人:张春明注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第I 卷(选择题)
单选共12道题,
一、单选题(共12道题,每题5分,总分60分)
1.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()
A .0.45
B .0.67
C .0.
D .0.32
2.下列说法正确的是(
)A .甲、乙二人比赛,甲胜的概率为
3
5
,则比赛5场,甲胜3场B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈
C .随机试验的频率与概率相等
D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%
3.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()
A .恰有1件一等品
B .至少有一件一等品
C .至多有一件一等品
D .都不是一等品
4.从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是A .至少有一个黑球与都是黑球B .至少有一个黑球与至少有一个白球C .恰好有一个黑球与恰好有两个黑球
D .至少有一个黑球与都是白球
5.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是A .对立事件B .互斥但不对立事件C .不可能事件
D .以上都不对
6.某学校调查了200名学生每周的自习时间(单位:小时)
,制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),
试卷第2页,总5页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………内…………○…………装…………○…………订…………○…………线…………○…………
22.5,25)
,25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(
)
A .56
B .60
C .140
D .120
7.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列关系不正确的是()
A .A D
⊆B .B D =∅
C .A C D
⋃=D .A C B D
= 8.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()
A .50%
B .30%
C .10%
D .60%
9.若A ,B 为互斥事件,则()
A .()()1P A P
B +C .()()1
P A P B +=D .()()1
P A P B +>10.从含有10件正品、2件次品的12件产品中,任意抽取3件,则必然事件是()
A .3件都是正品
B .3件都是次品
C .至少有1件次品
D .至少有1件正品
11.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为,x y ,则2log 1x y =的概率为()
A .
16
B .
536
C .
112D .
12
12.某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()
……○…………外…………○…………装…………○…………订…………○…………线…………○…………
学校:___________姓名:___________班级:___________考号:___________
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
A .x ,22s 100+
B .100x +,22s 100+
C .x ,2
s D .100x +,2
s 第II 卷(非选择题)
二、填空题(共4道题,每题5分)
13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
14.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为
.
15.袋中有形状、大小都相同的3只球,其中1只白球,1只红球,1只黄球.从中一次随机摸出2只球,则这2只球颜色为一红一黄的概率为_______.16.连续抛掷一颗骰子2次,则掷出的点数之和为8的概率为____.三、解答题(共6道题,17题10分,18-22题每题12分)17.某转盘被平均分成10份(如图所示).
转动转盘,当转盘停止后,指针指向的数字即为转出的数字.
问题
(1)设事件A =“转出的数字是5”,事件A 是必然事件、不可能事件还是随机事件?(2)设事件B =“转出的数字是0”,事件B 是必然事件、不可能事件还是随机事件?(3)设事件C =“转出的数字x 满足110x ≤≤,x ∈Z ”,事件C 是必然事件、不可能事件还是随机事件?
18.已知甲、乙两组数据可以整理成如图所示的茎叶图,分别求这两组数的中位数、25%分位数、75%分位数、平均数、方差.
试卷第4页,总5页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………内…………○…………装…………○…………订…………○…………线…………○…………
19.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.
20.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].
(1)求频率分布直方图中a 的值;
(2)估计该企业的职工对该部门评分不低于80的概率.
21.为了全面贯彻党的教育方针,坚持以人文本、德育为先,全面推进素质教育,让学生接触自然,了解社会,拓宽视野,丰富知识,提高社会实践能力和综合素质,减轻学生过重负担,培养学生兴趣爱好,丰富学生的课余生活,使广大学生在社会实践中,提高创新精神和实践能力,树立学生社会责任感,因此学校鼓励学生利用课余时间参加社会活动实践.寒假归来,某校高三(2)班班主任收集了所有学生参加社会活动信息,整理出如图所示的图.
……○…………外…………○…………装…………○…………订…………○…………线…………○…………
学校:___________姓名:___________班级:___________考号:___________
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
(1)求高三(2)班同学人均参加社会活动的次数;(2)求班上的小明同学仅参加1次社会活动的概率;(3)用分层抽样的方法从班上参加活动2次及以上
的同学中抽取一个容量为5的样本,从这5人中任选3人,其中仅有两人参加2次活动的概率..
22.某单位员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[)25,30,第2组
[)30,35,第3组[)35,40,第4组[)40,45,第5组[)45,50,得到的频率分布直方图如图
所示.
(1)下表是年龄的频率分布表,求正整数,a b 的值;区间
[)25,30[)30,35[)35,40[)40,45[)
45,50人数
5050
a
150b
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
